中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (09): 1826-1835 Previous Articles   Next Articles

• Review •

Biomaterials for Spheroidal Aggregate Culture of Hepatocytes

Qiu Yuan1,2  Zhang Jichuan2   Gao Changyou2,3**   

  1. (1.Zhejiang-California International NanoSystems Institute, Hangzhou 310012, China;2. Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China ;3.State Key Laboratory for Diagnosis and Treatment of Infectious Disease,Zhejiang University, Hangzhou 310003, China )
  • Received: Revised: Online: Published:
  • Contact: Gao Changyou E-mail:cygao@zju.edu.cn;cygao@mail.hz.zj.cn
PDF ( 1155 ) Cited
Export

EndNote

Ris

BibTeX

In the study of therapies for liver diseases, the in vitro culture of hepatocytes is one of the key issues since these cells are apt to lose their normal phenotype and liver-specific functions as a result of the change of culture microenvironment in vitro. It has been shown that the hepatocyte spheroidal aggregates can better maintain the normal structures and functions of hepatocytes, and thereby are more attractive for therapeutic applications. In this article, the recent progress on hepatocyte spheroidal aggregates is reviewed. It starts with the introduction of the status of hepatocytes in sinusoids and cellular architecture of the liver , following with detail discussion on influences of biomaterials on the hepatocyte spheroidal aggregates in terms of morphology and functions. These factors include chemical composition like galactose and RGD, charging property, hydrophilicity/hydrophobicity, surface topology, and three-dimensional scaffolds. Other factors such as culture environment, addition of bioactive factors, and co-culture with other types of cells are also introduced briefly. Finally, perspectives of study on the spheroidal aggregates are suggested.

Contents 
1 Introduction
2 Influences of biomaterials on hepatocyte spheroidal aggregates
2.1 Culture substrates modified with galactose
2.2 Multifunctional substrates modified with galactose
2.3 charged substrates
2.4 Hydrophilicity/hydrophobicity of the substrates
2.5 Topographical substrates
2.5 Three-dimensional scaffolds
3 Other factors beyond the biomaterials
4 Conclusions and Perspectives

CLC Number: 

[1 ] Strain A J,Neuberger J M. Science,2002,295: 1005—1009
[2 ] Lee W M N. Engl. J. Med. ,1993,329: 1862—1872
[3 ] Allen J W,Hassanein T,Bhatia S N. Hepatology,2001,34:
447—455
[4 ] Patzer J F,Ann N Y. Acad. Sci. ,2001,944: 320—333
[5 ] Carpentier B,Gautier A,Legallais C. Gut,2009,58: 1690—
1702
[6 ] Berthiaume F,Moghe P V,Toner M,et al. Faseb. J. ,1996,
10: 1471—1484
[7 ] Landry J,Bernier D,Ouellet C,et al. J. Cell. Biol. ,1985,
101: 914—923
[8 ] Brophy C M, Luebke-Wheeler J L, Amiot B P, et al.
Hepatology,2009,49: 578—586[9 ] Hansen L K,Hsiao C C,Friend J R,et al. Tissue Eng. ,1998,
4: 65—74
[10] Hodgkinson C P,Wright M C,Paine A J. Mol. Pharmacol. ,
2000,58: 976—981
[11] Kim S H,Kim J H,Akaike T. Febs Lett. ,2003,553: 433—
439
[12] Chung T W,Yang J,Akaike T,et al. Biomaterials,2002,23:
2827—2834
[13] Park I K,Yang J,Jeong H J,et al. Biomaterials,2003,24:
2331—2337
[14] Yang J,Goto M,Ise H,et al. Biomaterials,2002,23: 471—
479
[15] Gotoh Y,Niimi S,Hayakawa T,et al. Biomaterials,2004,25:
1131—1140
[16] Tobe S,Takei Y,Kobayashi K,et al. Biochem. Biophys. Res.
Commun. ,1992,184: 225—230
[17] Yoon J J,Nam Y S,Kim J H,et al. Biotechnol. Bioeng. ,
2002,78: 1—10
[18] Tan H P,Lao L H,Wu J D,et al. Polym. Adv. Technol. ,
2008,19: 15—23
[19] Ying L,Yin C,Zhuo R X,et al. Biomacromolecules,2003,4:
157—165
[20] Seo S J,Akaike T,Choi Y J,et al. Biomaterials,2005,26:
3607—3615
[21] Seo S J,Park I K,Yoo M K,et al. J. Biomat. Sci-Polym. E,
2004,15: 1375—1387
[22] Kim S H,Hoshiba T, Akaike T. Biomaterials,2004,25:
1813—1823
[23] Kim S H,Hoshiba T,Akaike T. J. Biomed. Mater. Res. Part
A,2003,67A: 1351—1359
[24] Glicklis R,Merchuk J C,Cohen S. Biotechnol. Bioeng. ,2004,
86: 672—680
[25] Harris A L. Nat. Rev. ,Cancer,2002,2: 38—47
[26] Du Y N,Chia S M,Han R B,et al. Biomaterials,2006,27:
5669—5680
[27] Du Y,Han R B,Wen F,et al. Biomaterials,2008,29: 290—301
[28] Chew S Y,Mi R F,Hoke A,et al. Adv. Funct. Mater. ,2007,
17: 1288—1296
[29] Yim E K F,Wen J,Leong K W. Acta Biomater. ,2006,2:
365—376
[30] Chew S Y,Wen J,Yim E K F,et al. Biomacromolecules,
2005,6: 2017—2024
[31] Chew S Y,Hufnagel T C,Lim C T,et al. Nanotechnology,
2006,17: 3880—3891
[32] Chua K N,Lim W S,Zhang P C,et al. Biomaterials,2005,
26: 2537—2547
[33] Feng Z Q,Chu X H,Huang N P,et al. Biomaterials,2009,
30: 2753—2763
[34] Koide N, Sakaguchi K,Koide Y, et al. Exp. Cell. Res. ,
1990,186: 227—235
[35] Ijima H,Matsushita T,Nakazawa K,et al. Tissue Eng. ,1998,
4: 213—226
[36] Matsushita T,Nakano K,Nishikura Y,et al. Cytotechnology,
2003,42: 57—66
[37] Kidambi S,Lee I,Chan C. J. Am. Chem. Soc. ,2004,126:
16286—16287
[38] Janorkar A V, Rajagopalan P, Yarmush M L, et al.
Biomaterials,2008,29: 625—632
[39] Ma Z W,Mao Z W,Gao C Y. Colloid Surface B,2007,60:
137—157
[40] 彭承宏( Peng C H) ,韩宝三( Han B S) ,高长有( Gao C Y)
等. 中华外科杂志( Chinese Journal of Surgery ) ,2004,42
(17) : 1064—1068
[41] 彭承宏( Peng C H) ,韩宝三( Han B S) ,高长有( Gao C Y)
等. 中华医学杂志(National Medical Journal of China) ,2004,
84(17) : 1460—1464
[42] Wittmer C R,Phelps J A,Lepus C M,Saltzman W M,Harding
M J,Van Tassel P R. Biomaterials,2008,29: 4082—4090
[43] Tsai W B,Lin J H. Acta Biomater. ,2009,5: 1442—1454
[44] Flemming R G,Murphy C J,Abrams G A,et al. Biomaterials,
1999,20: 573—588
[45] Krasteva N,Seifert B,Albrecht W,et al. Biomaterials,2004,
25: 2467—2476
[46] Smith L A,Liu X H,Hu J,et al. Biomaterials,2009,30:
2516—2522
[47] Fukuda J,Nakazawa K. Tissue Eng. ,2005,11: 1254—1262
[48] Huang H,Oizumi S,Kojima N,et al. Biomaterials,2007,28:
3815—3823
[49] Lee J,Cuddihy M J,Cater G M,et al. Biomaterials,2009,30:
4687—4694
[50] Bhatia S N,Balis U J,Yarmush M L,et al. Faseb J. ,1999,
13: 1883—1900
[51] Thomas R J,Bennett A,Thomson B,et al. Eur. Cells Mater. ,
2006,11: 16—26
[52] Kidambi S, Sheng L F, Yarmush M L, et al. Macromol.
Biosci. ,2007,7: 344—353
[53] Hannachi I E, Itoga K, Kumashiro Y, et al. Biomaterials,
2009,30: 5427—5432
[54] Miyazawa M,Torii T,Toshimitsu Y,et al. J. Gastroenterol.
Hepatol. ,2007,22: 1959—1964

[1] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[2] Rui Zhao, Xiao Yang, Xiangdong Zhu, Xingdong Zhang. Application of Trace Element Strontium-Doped Biomaterials in the Field of Bone Regeneration [J]. Progress in Chemistry, 2021, 33(4): 533-542.
[3] Xingang Zuo, Haolan Zhang, Tong Zhou, Changyou Gao. Biomaterials for Regulating Cell Migration and Tissue Regeneration [J]. Progress in Chemistry, 2019, 31(11): 1576-1590.
[4] Zhi Li, Houliang Tang, Anchao Feng, San H. Thang. Synthesis of Zwitterionic Polymers by Living/Controlled Radical Polymerization and Its Applications [J]. Progress in Chemistry, 2018, 30(8): 1097-1111.
[5] Jiang Min, Wang Min, Wei Shiyong, Chen Zhibao, Mu Shichun. Aligned Nanofibers Based on Electrospinning Technology [J]. Progress in Chemistry, 2016, 28(5): 711-726.
[6] Tian Liang, Yao Chen, Wang Yihong*. Recent Advances in Electrochemical Biosensors for In Vitro Diagnostic [J]. Progress in Chemistry, 2016, 28(12): 1824-1833.
[7] Liu Zongguang, Qu Shuxin, Weng Jie. Application of Polydopamine in Surface Modification of Biomaterials [J]. Progress in Chemistry, 2015, 27(2/3): 212-219.
[8] Cheng Xinfeng, Jin Yong, Qi Rui, Fan Baozhu, Li Hanping. Stimuli-Responsive Degradable Polymeric Hydrogels [J]. Progress in Chemistry, 2015, 27(12): 1784-1798.
[9] Liu Xiaobo, Kou Zongkui, Mu Shichun. Porous Graphene Materials [J]. Progress in Chemistry, 2015, 27(11): 1566-1577.
[10] Xu Lina, Ma Peipei, Chen Qiang, Lin Sicong, Shen Jian. Biological Application of Sulfobetaine Methacrylate Polymers [J]. Progress in Chemistry, 2014, 26(0203): 366-374.
[11] Li Chunge, Zhao Shuang, Li junjie, Yin Yuji*. Polymeric Biomaterials Containing Thiol/Disulfide Bonds [J]. Progress in Chemistry, 2013, 25(01): 122-134.
[12] Ma Mengjia, Chen Yuyun, Yan Zhiqiang, Ding Jian, He Dannong*, Zhong Jian*. Applications of Atomic Force Microscopy in Nanobiomaterials Research [J]. Progress in Chemistry, 2013, 25(01): 135-144.
[13] Tang Shiyang, Sun Xiaojun, Lin Li, Sun Yan, Liu Xianbin. Monodisperse Mesoporous Silica Nanoparticles: Synthesis and Application in Biomaterials [J]. Progress in Chemistry, 2011, 23(9): 1973-1984.
[14] Wang Wei, Li Bo, Gao Changyou. Modulating the Differentiation of BMSCs by Surface Properties of Biomaterials [J]. Progress in Chemistry, 2011, 23(10): 2160-2168.
[15] . Application of Caco-2 Cell Model to Transportation and Absorption of Toxic Substances [J]. Progress in Chemistry, 2010, 22(04): 740-747.