中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (09): 1808-1818 Previous Articles   Next Articles

• Review •

Electrospun Nanofiber Membranes as Supports for Enzyme Immobilization and Its Application

Dai Yunrong   Niu Junfeng**   Yi Lifeng   Liu Jia   Jiang Guoxiang   

  1. (The State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China)
  • Received: Revised: Online: Published:
  • Contact: Niu Junfeng E-mail:junfengn@bnu.edu.cn
PDF ( 3868 ) Cited
Export

EndNote

Ris

BibTeX

Electrospinning is considered as a simple and effective technology for producing polymer nanofibers, which has been widely used in tissue engineering, drug release and sensors etc. The nanofiber membranes obtained from electrospinning exhibit many extraordinary properties including high surface-to-volume ratio, porous structure and reusability. Due to these excellent features, electrospun nanofiber membranes become the outstanding candidates for enzyme immobilization, and have attracted extensive attention. On the base of briefly clarifying the preparation technique of electrospun nanofiber membranes, this review mainly summarized the recent advances in using electrospun nanofiber membranes as supports for enzyme immobilization by two different methods, i.e. surface immobilization and encapsulation. Surface immobilization refers to physical adsorption or chemical attachment of enzymes on pristine or modified electrospun nanofiber membranes, and encapsulation means immobilizing enzymes in electrospun nanofiber membranes through electrospinning a mixture of enzyme and polymer. The advantages and disadvantages of different immobilization methods were analyzed. The applications of the enzyme immobilized electrospun nanofiber membrane in bioreactors, biosensors and the treatment of environmental pollutants were discussed, and the prospects of this research field were also presented.

Contents 
1 Introduction
2 The preparation of electrospun nanofiber membranes
2.1 Electrospinning apparatus
2.2 The basic principle of electrospinning
2.3 Influence factors of electrospinning
3 Methods of enzymes immobilizing on/in electrospun nanofiber membranes
3.1 Surface immobilization method
3.2 Encapsulation method
4 Applications
5 Conclusions

CLC Number: 

[1 ] Monsan P,Combes D. Method. Enzymol. ,1988,137: 584—
598
[2 ] Hanefeld U,Gardossi L,Magner E. Chem. Soc. Rev. ,2009,
38: 453—468
[3 ] Brady D,Jordaan J. Biotechnol. Lett. ,2009,31: 1639—1650
[4 ] Lukowska E,Pijanowska D,Chwojnowski A. Pol. J. Chem. ,
2008,82: 1265—1272
[5 ] Krajewska B. J. Mol. Catal. B: Enzym. ,2009,59: 22—40
[6 ] Fuchsbauer H L,Gerber U,Engelmann J,Seeger T,Sinks C,
Hecht T. Biomaterials,1996,17: 1481—1488
[7 ] Emregul E,Sungur S,Akbulut U. J. Biomat. Sci. Polym. E,
2005,16: 505—519
[8 ] Yong Y,Bai Y X,Li Y F,Lin L,Cui Y J,Xia C G. Process
Biochem. ,2008,43: 1179—1185
[9 ] Lei L,Bai Y X,Li Y F,Yi L X,Yang Y,Xia C G. J. Magn.
Magn. Mater. ,2009,321: 252—258
[10] Sun D M,Cai C X,Xing W,Lu T H. Chinese Sci. Bull. ,
2004,49: 2452—2454
[11] 吕勇军( Lv Y J) ,李佩晋( Li P J) ,郭杨龙( Guo Y L) ,王
艳芹(Wang Y Q) ,卢冠忠( Lu G Z) . 化学进展( Progress in
Chemistry) ,2008,20: 1172—1179
[12] Huang J,Zhou J Y,Xiao H Y,Long S Y,Wang J T. Acta
Chim. Sinica,2005,63: 1343—1347
[13] Liu W F,Zhang S P,Wang P. J. Biotechnol. ,2009,139:
102—107
[14] Yang G,Wu J P, Xu G, Yang L R. J. Mol. Catal. B:
Enzym. ,2009,57: 96—103
[15] Smuleac V,Butterfield D A,Bhattacharyya D. Langmuir,2006,
22: 10118—10124
[16] Song H,Wu G X,Liu K. J. Environ. Sci. China,2004,16:
392—396
[17] Wang P. Curr. Opin. Biotechnol. ,2006,17: 574—579
[18] Kim J,Grate J W,Wang P. Chem. Eng. Sci. ,2006,61:
1017—1026
[19] Qiu H J,Xu C X,Ji G L,Huang X R,Han S H,Ding Y,Qu
Y B. Acta Chim. Sinica,2008,66: 2075—2080
[20] Sun D H,Chang C,Li S,Lin L W. Nano Lett. ,2006,6:
839—842
[21] Agarwal S,Wendorff J H, Greiner A. Polymer,2008,49:
5603—5621
[22] Burger C,Hsiao B S,Chu B. Annu. Rev. Mater. Res. ,2006,
36: 333—368
[23] Huang Z M,Zhang Y Z,Kotaki M,Ramakrishna S. Compos.
Sci. Technol. ,2003,63: 2223—2253
[24] Wang Z G,Wan L S,Liu Z M,Huang X J,Xu Z K. J. Mol.
Catal. B: Enzym. ,2009,56: 189—195
[25] Chen J P,Ho K H,Chiang Y P,Wu K W. J. Membrane Sci. ,
2009,340: 9—15
[26] Greiner A,Wendorff J H. Angew. Chem. Int. Ed. ,2007,46:
5670—5703
[27] Li D,Xia Y N. Adv. Mater. ,2004,16: 1151—1170
[28] Matthews J A, Wnek G E, Simpson D G, Bowlin G L.
Biomacromolecules,2002,3: 232—238
[29] 薛聪(Xue C) ,胡影影(Hu Y Y) ,黄争鸣(Huang Z M) . 高
分子通报( Chinese Polymer Bulletin) ,2009,6: 38—47
[30] Chronakis I S. J. Mater. Process Tech. ,2005,167: 283—293
[31] 汪怿翔(Wang Y X) ,张俐娜( Zhang L N) . 高分子通报
( Chinese Polymer Bulletin) ,2008,7: 66—76
[32] Dessouki A M,Atia K S. Biomacromolecules,2002,3: 432—
437
[33] 车小琼( Che X Q) ,孙庆申( Sun Q S) ,赵凯( Zhao K) . 高
分子通报( Chinese Polymer Bulletin) ,2008,2: 45—49
[34] De Vrieze S,Westbroek P,Van Camp T,Van Langenhove L. J.
Mater. Sci. ,2007,42: 8029—8034
[35] Chen Z G,Mo X M,Qing F L. Mater. Lett. ,2007,61:
3490—3494
[36] Lee K H,Ki C S,Baek D H,Kang G D,Ihm D W,Park Y H.
Fiber Polym. ,2005,6: 181—185
[37] 高永峰(Gao Y F) ,袁金颖(Yuan J Y) ,隋晓锋( Sui X F) ,
周密( Zhou M) ,蔡志楠( Cai Z N) . 化学进展( Progress in
Chemistry) ,2009,21: 1553—1559
[38] Ohkawa K,Hayashi S,Nishida A,Yamamoto H,Ducreux J.
Text. Res. J. ,2009,79: 1396—1401
[39] Wang Z G,Wang J Q,Xu Z K. J. Mol. Catal. B: Enzym. ,
2006,42: 45—51
[40] Jia H F,Zhu G Y,Vugrinovich B,Kataphinan W,Reneker D
H,Wang P. Biotechnol. Prog. ,2002,18: 1027—1032
[41] Kim K,Yu M,Zong X H,Chiu J,Fang D F,Seo Y S,Hsiao B
S,Chu B,Hadjiargyrou M. Biomaterials,2003,24: 4977—44: 2032—2039
[44] Li S F,Chen J P,Wu W T. J. Mol. Catal. B: Enzym. ,2007,
47: 117—124
[45] Ye P,Xu Z K,Wu J,Innocent C,Seta P. Macromolecules,
2006,39: 1041—1045
[46] Li S F,Wu W T. Biochem. Eng. J. ,2009,45: 48—53
[47] Kim B C,Nair S,Kim J,Kwak J H,Grate J W,Kim S H,Gu
M B. Nanotechnology,2005,16: S382—S388
[48] Huang X J,Ge D,Xu Z K. Eur. Polym. J. ,2007,43:
3710—3718
[49] Ye P,Xu Z K,Wu J,Innocent C,Seta P. Biomaterials,2006,
27: 4169—4176
[50] Huang X J,Xu Z K,Wan L S,Innocent C,Seta P. Macromol.
Rapid Commun. ,2006,27: 1341—1345
[51] Huang X J,Yu A G,Jiang J,Pan C,Qian J W,Xu Z K. J.
Mol. Catal. B: Enzym. ,2009,57: 250—256
[52] Che A F,Huang X J,Wang Z G,Xu Z K. Aust. J. Chem. ,
2008,61: 446—454
[53] Li L,Hsieh Y L. Polymer Biocatalysis and Biomaterials Ⅱ,
2008,999: 129—143
[54] Adriano W S,Mendonca D B,Rodrigues D S,Mammarella E J,
Giordano R. Biomacromolecules,2008,9: 2170—2179
[55] Huang X J,Yu A G,Ge D,Xu Z K. Chem. Res. Chinese U. ,
2008,24: 231—237
[56] Fadnavis N W, Sheelu G, Kumar B M, Bhalerao M U,
Deshpande A A. Biotechnol. Prog. ,2003,19: 557—564
[57] Wang Y H,Hsieh Y L. J. Polym. Sci. Pol. Chem. ,2004,
42: 4289—4299
[58] Chen H,Hsieh Y L. Biotechnol. Bioeng. ,2005,90: 405—
413
[59] Cang-Rong J T. Nanotechnology,2009,20: 1—20
[60] Wang Z G,Ke B B,Xu Z K. Biotechnol. Bioeng. ,2007,97:
708—720
[61] Wang Z G,Xu Z K,Wan L S,Wu J,Innocent C,Seta P.
Macromol. Rapid Commun. ,2006,27: 516—521
[62] Liu Y,Chen J,Anh N T,Too C O,Misoska V,Wallace G G.
J. Electrochem. Soc. ,2008,155: K100—K103
[63] Lu P,Hsieh Y L. J. Membrane Sci. ,2009,330: 288—296
[64] Ma Z W,Masaya K,Ramakrishna S. J. Membrane Sci. ,2006,
282: 237—244
[65] Sakai S,Antoku K,Yamaguchi T,Kawakami K. J. Membrane
Sci. ,2008,325: 454—459
[66] Ren G L,Xu X H,Liu Q,Cheng J,Yuan X Y,Wu L L,Wan
Y Z. Reactive and Functional Polymers,2006,66: 1559—1564
[67] Wu L L,Yuan X Y,Sheng J. J. Membrane Sci. ,2005,250:
167—173
[68] Xie J B,Hsieh Y L. J. Mater. Sci. ,2003,38: 2125—2133
[69] Patel A C,Li S X,Yuan J M,Wei Y. Nano Lett. ,2006,6:
1042—1046
[70] Lu Y,Jiang H L,Tu K H,Wang L Q. Acta Biomater. ,2009,
5: 1562—1574
[71] Dror Y,Kuhn J,Avrahami R,Zussman E. Macromolecules,
2008,41: 4187—4192
[72] Zhang Y Z,Wang X,Feng Y,Li J,Lim C T,Ramakrishna S.
Biomacromolecules,2006,7: 1049—1057
[73] Xu X L,Zhuang X L,Chen X S,Wang X R,Yang L X,Jing X
B. Macromol. Rapid Commun. ,2006,27: 1637—1642
[74] Sy J C,Klemm A S,Shastri V P. Adv. Mater. ,2009,21:
1814—1819
[75] Yang Y,Li X H,Qi M B,Zhou S B,Weng J. Eur. J. Pharm.
Biopharm. ,2008,69: 106—116
[76] Xu X L,Chen X S,Ma P A,Wang X R,Jing X B. Eur. J.
Pharm. Biopharm. ,2008,70: 165—170
[77] Yang Y,Li X H,Cui W G,Zhou S B,Tan R,Wang C Y. J.
Biomed. Mater. Res. A,2008,86A: 374—385
[78] Qi H X,Hu P,Xu J,Wang A J. Biomacromolecules,2006,7:
2327—2330
[79] Herricks T E,Kim S H,Kim J,Li D,Kwak J H,Grate J W,
Kim S H,Xia Y N. J. Mater. Chem. ,2005,15: 3241—3245
[80] Xu X L,Yang L X,Xu X Y,Wang X,Chen X S,Liang Q Z,
Zeng J,Jing X B. J. Control. Release,2005,108: 33—42
[81] Maretschek S,Greiner A,Kissel T. J. Control. Release,2008,
127: 180—187
[82] Liao Y L,Zhang L F,Gao Y,Zhu Z T,Fong H. Polymer,
2008,49: 5294—5299
[83] Angeles M, Cheng H L, Velankar S S. Polym. Advan.
Technol. ,2008,19: 728—733
[84] Thavasi V,Singh G,Ramakrishna S. Energy & Environmental
Science,2008,1: 205—221
[85] Ignatova M,Stoilova O,Manolova N,Mita D G,Diano N,
Nicoiucci C,Rashkov I. Eur. Polym. J. ,2009,45: 2494—
2504

[1] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[2] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[3] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[4] Fengqi Liu, Yonggang Jiang, Fei Peng, Junzong Feng, Liangjun Li, Jian Feng. Preparation and Application of Ultralight Nanofiber Aerogels [J]. Progress in Chemistry, 2022, 34(6): 1384-1401.
[5] Yaqi Wang, Qiang Wu, Junling Chen, Feng Liang. Diels-Alder Reaction Catalyst [J]. Progress in Chemistry, 2022, 34(2): 474-486.
[6] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[7] Gang Lin, Yuanyuan Zhang, Jian Liu. Bioinspired Photo/(Electro)-Catalytic NADH Regeneration [J]. Progress in Chemistry, 2022, 34(11): 2351-2360.
[8] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[9] Xiangye Li, Tianjiao Bai, Xin Weng, Bing Zhang, Zhenzhen Wang, Tieshi He. Application of Electrospun Fibers in Supercapacitors [J]. Progress in Chemistry, 2021, 33(7): 1159-1174.
[10] Chen Hou, Wenqiang Chen, Linhui Fu, Sufeng Zhang, Chen Liang. Covalent Organic Frameworks(COFs) Materials in Enzyme Immobilization and Mimic Enzymes [J]. Progress in Chemistry, 2020, 32(7): 895-905.
[11] Hua Guo, Lei Zhang, Xu Dong, Gangyi Shen, Junfa Yin. Immobilized Multi-Enzyme Cascade Reactor [J]. Progress in Chemistry, 2020, 32(4): 392-405.
[12] Lei Zhu, Jianan Wang, Jianwei Liu, Ling Wang, Wei Yan. Applications of Electrospun One-Dimensional Nanomaterials in Gas Sensors [J]. Progress in Chemistry, 2020, 32(2/3): 344-360.
[13] Liang Ma, Xuejuan Shi, Xiaoxiao Zhang, Lili Li. Preparation of the Controllable Core-Shell Structured Electrospun Polymer Fibers and Their Application [J]. Progress in Chemistry, 2019, 31(9): 1213-1220.
[14] Danbi Tian, Shengnan Wu, Hao Zhang, Ling Jiang, Fengwei Huo. Application of Inner Filter Effect Technology in Biological Detection and Disease Markers [J]. Progress in Chemistry, 2019, 31(2/3): 413-421.
[15] Jiqian Wang*, Hongyu Yan, Jie Li, Liyan Zhang, Yurong Zhao, Hai Xu*. Artificial Metalloenzymes Based on Peptide Self-Assembly [J]. Progress in Chemistry, 2018, 30(8): 1121-1132.