中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (09): 1784-1798 Previous Articles   Next Articles

• Review •

Ordered Honeycomb-Patterned Films via Breath Figures

Sun Hang   Wu Lixin**   

  1. (State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China)
  • Received: Revised: Online: Published:
  • Contact: Wu Lixin E-mail:wulx@jlu.edu.cn
PDF ( 2961 ) Cited
Export

EndNote

Ris

BibTeX

Ordered honeycomb-patterned films have important applications in patterned templates, photonic or optoelectronic devices, catalysis, sensors, and so on. Among those techniques for the fabrication of honeycomb structured films, the breath figure is proved to be an effective dynamic template method through providing a humid condition to the surface of polymer solution in a volatile solvent. The condensed water droplets caused by rapid cooling due to solvent evaporation self-organize into a well ordered hexagonal array that acts as the template directing the formation of ordered honeycomb-patterned structure. The breath figure technique has attracted considerable attention over recent years due to its facility, speedness, cheapness, and the automatic remove of the condensed water droplets. And the size of the pore structure can be easily adjusted by changing the correlative experimental parameters. This paper reviews the breath figure method, discusses the formation mechanism and the effects of the correlative experimental parameters on the structures of the formed honeycomb-patterned films, and summarizes the diverse functional materials applied in this breath figure method, the methods used to enhance the stability of the porous films, the introduction of substructures into the honeycomb-patterned films in view of the further applications of the honeycomb-patterned films. Finally, the development trend of this breath figure method for the preparation of ordered honeycomb-patterned films is prospected.

Contents 
1 Introduction
2 Method and mechanism
3 Influence factors
4 Applied materials
4.1 Polymers
4.2 Nanomaterials
4.3 Biomaterials and biocompatible polymers
4.4 Organometallic materials
5 Honeycomb-patterned films with substructure
5.1 Amphiphilic block copolymers
5.2 Mixtures
6 Enhancement of the stability
7 Applications
7.1 Template
7.2 Superhydrophobic surface
7.3 Cell growth substrate
8 Conclusions and outlook

CLC Number: 

[1 ] Campbell M,Sharp D N,Turberfield A J. Nature,2000,404:
53—56
[2 ] Davis M E. Nature,2002,417: 813—821
[3 ] Palm A,Novotny M V. Anal. Chem. ,1997,69: 4499—4507
[4 ] Schugens C,Maquet V,Grandfils C,Jerome R,Teyssie P.
Polymer,1996,37: 1027—1038
[5 ] Khang D,Yoon H,Lee H H. Adv. Mater. ,2001,13: 749—
752
[6 ] Gates B,Yin Y,Xia Y. Chem. Mater. ,1999,11: 2827—
2836
[7 ] Seshadri R,Meldrum F C. Adv. Mater. ,2000,12: 1149—
1151
[8 ] Imhof A,Pine D J. Nature,1997,389: 948—951
[9 ] Li Z,Zhao W,Liu Y,Rafailovich M H,Sokolov J,Khougaz K,
Eisenberg A,Lennox R B,Krausch G. J. Am. Chem. Soc. ,
1996,118: 10892—10893
[10] Hoa M L K,Lu M,Zhang Y. Advances in Colloid and Interface
Science,2006,121: 9—23
[11] Widawski G, Rawiso M, Francois B. Nature, 1994, 369:
387—389
[12] Bunz U H F. Adv. Mater. ,2006,18: 973—989
[13] Stenzel M H,Barner-Kowollik C,Davis T P. J. Polym. Sci.
Part A: Polym. Chem. ,2006,44: 2363—2375
[14] Stenzel M H. Aust. J. Chem. ,2002,55: 239—243
[15] 王赪胤(Wang C Y) ,冒银道(Mao Y D) ,王德艳(Wang D
Y) ,胡效亚(Hu X Y) . 化学进展( Progress in Chemistry) ,
2008,20(1) : 105—116
[16] Rayleigh L. Nature,1911,86: 416—417
[17] Rayleigh L. Nature,1912,90: 436—437
[18] Knobler C M,Beysens D. Europhys. Lett. ,1988,6: 707—712
[19] Steyer A,Guenoun P,Beysens D,Knobler C M. Phys. Rev.
B: Condens. Matter Mater. Phys. ,1990,42: 1086—1088
[20] Karthaus O,Maruyama N,Cieren X,Shimomura M,Hasegawa
H,Hashimoto T. Langmuir,2000,16: 6071—6076
[21] Barrow M S,Jones R L,Srinivasarao M. Spectroscopy,2004,
18: 577—585
[22] Srinivasarao M,Collings D,Philips A,Patel S. Science,2001,
292: 79—83
[23] Maruyama N,Koito T,Nishida J,Sawadaishi T,Cieren X,Ijiro
K,Karthaus O,Shimomura M. Thin Solid Films,1998,327:854—856
[24] Peng J,Han Y,Yang Y,Li B. Polymer,2004,45: 447—452
[25] Tian Y,Ding H,Jiao Q, Shi Y. Macromol. Chem. Phys. ,
2006,207: 545—553
[26] Wang C,Mao Y,Wang D,Qu Q,Yang G,Hu X. J. Mater.
Chem. ,2008,18: 683—690
[27] Hernandez-Guerrero M,Davis T P,Barner-Kowollik C,Stenzel
M H. Eur. Polym. J. ,2005,41: 2264—2277
[28] Li J,Cheng J,Zhang Y,Gopalakrishnakone P. Colloid Polym.
Sci. ,2009,287: 29—36
[29] Hernández-Guerrero M,Barner-Kowollik C,Davis T P,Stenzel
M H. European Polymer Journal,2005,41: 2264—2277
[30] Saunders A E,Dickson J L,Shah P S,Lee M Y,Lim K T,
Johnston K P,Korgel B A. Physical Review E,2006,73: art.
no. 031608
[31] Cheng C X,Tian Y,Shi Y Q,Tang R P, Xi F. Langmuir,
2005,21: 6576—6581
[32] Ghannam L,Manguian M,Francois J,Billon L. Soft Matter,
2007,3: 1492—1499
[33] Nishikawa T,Ookura R,Nishida J,Arai K,Hayashi J,Kurono
N,Sawadaishi T,Hara M,Shimomura M. Langmuir,2002,18:
5734—5740
[34] Connal L A,Vestberg R,Gurr P A,Hawker C J,Qiao G G.
Langmuir,2008,24: 556—562
[35] Connal L A,Qiao G G. Soft Matter,2007,3: 837—839
[36] Nishikawa T,Nonomura M,Arai K,Hayashi J,Sawadaishi T,
Nishiura Y,Hara M, Shimomura M. Langmuir,2003,19:
6193—6201
[37] Ma H,Hao J. Chem. Eur. J. ,2010,16: 655—660
[38] Bolognesi A,Mercogliano C,Yunus S,Civardi M,Comoretto
D,Turturro A. Langmuir,2005,21: 3480—3485
[39] Yu C,Zhai J,Gao X,Wan M,Jiang L,Li T,Li Z. J. Phys.
Chem. B,2004,108: 4586—4589
[40] Nurmawati M H,Renu R,Ajikumar P K,Sindhu S,Cheong F
C,Sow C H,Valiyaveettil S. Adv. Funct. Mater. ,2006,16:
2340—2345
[41] Song L,Bly R K,Wilson J N, Bakbak S, Park J O,
Srinivasarao M,Bunz U H F. Adv. Mater. ,2004,16: 115—
118
[42] Liu C,Gao C,Yan D Y. Angew. Chem. Int. Ed. ,2007,46:
4128—4131
[43] Dong W,Zhou Y,Yan D,Mai Y,He L,Jin C. Langmuir,
2009,25: 173—178
[44] Ejima H,Iwata T,Yoshie N. Macromolecules, 2008, 41:
9846—9848
[45] Kim J H,Seo M,Kim S Y. Adv. Mater. ,2009,21: 4130—
4133
[46] Yonezawa T,Onoue S Y,Kimizuka N. Adv. Mater. ,2001,
13: 140—142
[47] Shah P S,Sigman M B,Stowell C A,Lim K T,Johnston K P,
Korgel B A. Adv. Mater. ,2003,15: 971—974
[48] Saunders A E,Shah P S,Sigman M B,Hanrath T,Hwang H
S,Lim K T,Johnston K P,Korgel B A. Nano Lett. ,2004,4:
1943—1948
[49] Li J,Peng J,Huang W,Wu Y,Fu J,Cong Y,Xue L,Han Y
C. Langmuir,2005,21: 2017—2021
[50] Takamori H,Fujigaya T,Yamaguchi Y,Nakashima N. Adv.
Mater. ,2007,19: 2535—2539
[51] Wakamatsu N,Takamori H,Fujigaya T,Nakashima N. Adv.
Funct. Mater. ,2009,19: 311—316
[52] Lee S H,Park J S,Lim B K,Mo C B,Lee W J,Lee J M,
Hong S H,Kim S O. Soft Matter,2009,5: 2343—2346
[53] Francois B,Ederlé Y,Mathis C. Synth. Met. ,1999,103:
2362—2363
[54] Vohra V,Bolognesi A,Calzaferri G,Botta C. Langmuir,2009,
25: 12019—12023
[55] Bu W,Li H,Sun H,Yin S,Wu L. J. Am. Chem. Soc. ,
2005,127: 8016—8017
[56] Sun H,Li H,Bu W,Xu M,Wu L. J. Phys. Chem. B,2006,
110: 24847—24854
[57] Fan D,Jia X,Tang P,Hao J C,Liu T. Angew. Chem. Int.
Ed. ,2007,46: 3342—3345
[58] Tang P Q,Hao J C. Langmuir,2010,26: 3843—3847
[59] Tang P,Hao J C. Journal of Colloid and Interface Science,
2009,333: 1—5
[60] Sun H,Li W,Wollenberg L,Li B,Wu L,Li F,Xu L. J.
Phys. Chem. B,2009,113: 14674—14680
[61] Kadla J F,Asfour F H,Bar-Nir B. Biomacromolecules,2007,
8: 161—165
[62] Stenzel M H,Davis T P,Fane A G. J. Mater. Chem. ,2003,
13: 2090—2097
[63] Sun H,Li W,Wu L. Langmuir,2009,25: 10466—10472
[64] Zhao B,Zhang J,Wang X,Li C X. J. Mater. Chem. ,2006,
16: 509—513
[65] Karikari A S,Williams S R,Heisey C L,Rawlett A M,Long T
E. Langmuir,2006,22: 9687—9693
[66] Fukuhira Y,Kitazono E,Hayashi T,Kaneko H,Tanaka M,
Shimomura M,Sumi Y. Biomaterials,2006,27: 1797—1802
[67] Chang-Soo L,Kimizuka N. Proc. Natl. Acad. Sci. USA,2002,
99: 4922—4926
[68] Englert B C,Scholz S,Leech P J,Srinivasarao M,Bunz U H
F. Chem. Eur. J. ,2005,11: 995—1000
[69] Karthaus O,Cieren X,Maruyama N,Shimomura M. Materials
Science and Engineering C,1999,10: 103—106
[70] Stenzel M H,Davis T P. Aust. J. Chem. ,2003,56: 1035—
1038
[71] Nygard A,Davis T P,Barner-Kowollik C,Stenzel M H. Aust.
J. Chem. ,2005,58: 595—599
[72] Hayakawa T, Yokoyama H. Langmuir, 2005, 21: 10288—
10291
[73] Cui L,Xuan Y,Li X,Ding Y,Li B,Han Y C. Langmuir,
2005,21: 11696—11703
[74] Cui L,Peng J,Ding Y,Li X,Han Y C. Polymer,2005,46:
5334—5340

[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[3] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[4] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[5] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[6] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[7] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[8] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[9] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[10] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[11] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[12] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[13] Jiatian Guo, Yuchao Lu, Chen Bi, Jiating Fan, Guohe Xu, Jingjun Ma. Stimuli-Responsive Peptides Self-Assembly and Its Application [J]. Progress in Chemistry, 2019, 31(1): 83-93.
[14] Liu Xu, Chen Qian, Chenqi Zhu, Zhipeng Chen, Rui Chen*. The Study of Peptides Nanomedicine for Drug Delivery Systems [J]. Progress in Chemistry, 2018, 30(9): 1341-1348.
[15] Jiqian Wang*, Hongyu Yan, Jie Li, Liyan Zhang, Yurong Zhao, Hai Xu*. Artificial Metalloenzymes Based on Peptide Self-Assembly [J]. Progress in Chemistry, 2018, 30(8): 1121-1132.