中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (09): 1735-1740 Previous Articles   Next Articles

• Review •

Microcapsules from the Self-Assembly of Nanoparticles at Interfaces

Yang Xiaochao1,2 Mo Zhihong1,2**   

  1. (1. College of Bioengineering, National Key Laboratory for Novel Micro/Nano Device and System Technology,Chongqing University ,Chongqing 400044, China; 2. College of Chemistry and Chemical Engineering,Chongqing University, Chongqing 400044, China)
  • Received: Revised: Online: Published:
  • Contact: Mo Zhihong E-mail:zhihmo@cqu.edu
PDF ( 1389 ) Cited
Export

EndNote

Ris

BibTeX

Microcapsules are multifunctional materials with applications in various fields related to biomedical research. In the previous studies, lipids and polymers were intensively used as microcapsule shell construction materials. Recently, the self-assembly of nanoparticles at emulsion interfaces have showed great potential as an alternative for microcapsule fabrication. The construction of microcapsule shells using nanoparticles as building blocks incorporated the unique physiochemical properties of nanoparticles into the functional capabilities of the microcapsules. The new properties derived from nanoparticles, such as enhanced mechanical strength, controllable permeability, readily surface modification and controlled release, making the microcapsules of great interest in bio-delivery applications. In this paper, the recent scientific advances in the self-assembly of nanoparticle protected microcapsules including the theories for nanoparticle interfacial assembly, the strategies for the fabrication of stable microcapsule shells, and the reduction of polydispersity of microcapsules were reviewed. The challenges for the self-assembly of nano-sized capsules were discussed and a proposal for the development of nano-sized capsules was concluded.

Contents 
1 Introduction
2 Self-assembly theories for microcapsule shell construction
3 Fabrication of nanoparticle shells
3.1 Cross-linked nanoparticles as microcapsule shell
3.2 Nanoparticle/protein conjugates as microcapsule shell
3.3 Janus nanoparticles as microcapsule shell
4 Reduce the polydispersity of microcapsules
5 Conclusions and Outlook

CLC Number: 

[1 ] Pickering S U. J. Chem. Soc. Trans. ,1907,91: 2001—2021
[2 ] Ramsden W. Proc. R. Soc. A,1903,72: 156—164
[3 ] Velev O D,Lenhoff A M,Kaler E W. Science,2000,287:
2240—2243
[4 ] Binks B P,Lumsdon S O. Langmuir,2001,17: 4540—4547
[5 ] Kim S H,Heo C J,Lee S Y,Yi G R. Chem. Mater. ,2007,
19: 4751—4760
[6 ] Torchilin V F. Nat. Rev. Drug Discov. ,2005,4: 145—160
[7 ] De Geest B G,de Koker S,Sukho G B,Kreft O,Parak W J,
Skirtach A G,Demeester J,de Smedt S C,Henninka W E. Soft
Matter,2009,5: 282—291
[8 ] Dinsmore A D,Hsu M F,Nikolaides M G,Marquez M,Bausch
A R,Weitz D A. Science,2002,298: 1006—1009[9 ] Saleh N,Sarbu T,Sirk K,Lowry G V,Matyjaszewski K,Tilton
R D. Langmuir,2005,21: 9873—9878
[10] Binks B P,Lumsdon S O. Phys. Chem. Chem. Phys. ,2000,
2: 2959—2967
[11] Binks B P,Lumsdon S O. Langmuir,2000,16: 3748—3756
[12] Binks B P,Horozov T S. Angew. Chem. Int. Ed. ,2005,44:
3722 —3725
[13] Binks B P,Murakami R. Nat. Mater. ,2006,5: 865—869
[14] Skirtach A G,Javier A M,Kreft O,Kohler K,Alberola A P,
Mohwald H,Parak W J,Sukhorukov G B. Angew. Chem. Int.
Ed. ,2006,45: 4612—4617
[15] Brigger I,Dubernet C,Couvreur P. Adv. Drug Deliv. Rev. ,
2001,54: 631—651
[16] Pieranski P. Phys. Rev. Lett. ,1980,45: 569—572
[17] Bker A,He J,Thomas T E,Rusell T P. Soft Matter,2007,3:
1231—1248
[18] Binks B P,Lumsdon S O. Langmuir,2000,16: 8622—8631
[19] Nie Z,Park J,Li W,Bon S A F,Kumacheva E. J. Am.
Chem. Soc. ,2008,130: 16508—16509
[20] Aveyard R,Binks B P,Clint J H. Colloid Interface Sci. ,2003,
100 /102: 503—546
[21] Zeng C,Bissig H,Dinsmore A D. Solid State Commun. ,2006,
139: 547—556
[22] Studart A R, Gonzenbach R T, Akartuna I, Tervoort E,
Gauckler L J. J. Mater. Chem. ,2007,17: 3283—3289
[23] Lin Y,Skaff H, Emrick T, Dinsmore A D, Rusell T P.
Science,2003,299: 226—229
[24] Skaff H,Lin Y,Tangirala R,Breitenkamp K,Bker A,Rusell
T P,Emrick T. Adv. Mater. ,2005,17: 2082—2086
[25] Arumugam P,Patra D,Samanta B,Agasti S S,Subramani C,
Rotello V M. J. Am. Chem. Soc. ,2008,130: 10046—10047
[26] Samanta B,Patra D,Subramani C,Ofir Y,Yesilbag G,Sanyal
A,Rotello V M. Small,2009,5: 685—688
[27] Samanta B,Yang X C,Ofir Y,Park M H,Patra D,Agasti S S,
Miranda O R,Mo Z H,Rotello V M. Angew. Chem. Int. Ed. ,
2009,48: 5341—5344
[28] Paunov V N,Cayre O J. Adv. Mater. ,2004,16: 788—791
[29] Howse J R,Jones R A L,Ryan A J,Gough T,Vafabakhsh R,
Golestanian R. Phys. Rev. Lett. ,2007,99: art. no. 048102
[30] Walther A,Müller A H E. Soft Matter,2008,4: 663—668
[31] Binks B P,Fletcher P D I. Langmuir,2001,17: 4708—4710
[32] Cheung D L,Bon S A F. Soft Matter,2009,5: 3969—3976
[33] Nonomura Y, Komura S, Tsujii K. Langmuir, 2004, 20:
11821—11823
[34] Glaser N,Adams D J,Bker A. Langmuir,2006,22: 5227—
5229
[35] Shiga K,Muramatsu N,Kondo T J. Pharm. Pharmacol. ,1996,
48: 891—895
[36] Chu L Y,Park S H,Yamaguchi T,Nakao S. Langmuir,2002,
18(5) : 1856—1864
[37] Binks B P,Whitby C P. Langmuir,2004,20: 1130—1137
[38] Utada A S,Lorenceau E,Link D R,Kaplan P D,Stone H A,
Weitz D A. Science,2005,308: 537—541
[39] Chu L Y,Utada A S,Shah R K,Kim J W,Weitz D A. Angew.
Chem. Int. Ed. ,2007,46: 8970 —8974
[40] Shaha R K,Shuma H C,Rowata A C,Lee D,Agresti J J,
Utada A S,Chu L Y,Kim J W,Fernandez-Nieves A,Martinez
C J,Weitz D A. Mater. Today,2008,11: 18—27
[41] Subramaniam A B,Manouk A,Stone H A. Nat. Mater. ,2005,
4: 553—556
[42] Lee D,Weitz D A. Adv. Mater. ,2008,20: 3498—3503
[43] Myers D. Surfaces,Interfaces,and Colloids———Principles and
Applications ( ed. 2) . New York: Wiley-VCH,1999
[44] Mason T G,Wilking J N,Meleson K,Wilking J N,Meleson K,
Chang C B,Graves S M. J. Phys. : Condens. Matter,2006,
18: R635—R666

[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Xiaozhu Zhao, Wen Li, Xuerui Zhao, Naipu He, Chao Li, Xuehui Zhang. Controlled Growth of MOFs in Emulsion [J]. Progress in Chemistry, 2023, 35(1): 157-167.
[3] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[4] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[5] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[6] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[7] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[8] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[9] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[10] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[11] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[12] Zhao Xiaoxi, Wang Cong, Tian Yong, Wang Xiufang. Preparation of Mesoporous Carbon Materials via Emulsion Method [J]. Progress in Chemistry, 2022, 34(10): 2316-2328.
[13] Dong Yang, Keyi Gao, Baiqin Yang, Lei Lei, Lixia Wang, Chaohua Xue. Classification of Microfluidic System and Applications in Nanoparticles Synthesis [J]. Progress in Chemistry, 2021, 33(3): 368-379.
[14] Yuanxia Zhang, Yan Bao, Jianzhong Ma. Synthesis of Janus Particles and Their Application Progress in Pickering Emulsion [J]. Progress in Chemistry, 2021, 33(2): 254-262.
[15] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.