中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (09): 1720-1728 Previous Articles   Next Articles

• Review •

Anode Eelectrocatalysts and Reaction Mechnism for the Direct Borohydide Fuel Cell

Duan Donghong   Sun Yanping **   

  1. (Chemical Engineering Department,Taiyuan University of Technology,Taiyuan 030024, China)
  • Received: Revised: Online: Published:
  • Contact: Sun Yanping E-mail:ypsun@tyut.edu.cn
PDF ( 1516 ) Cited
Export

EndNote

Ris

BibTeX

Direct borohydride fuel cell (DBFC) is a potential power supplier in portable applications using alkali metal borohydride as fuel. The anodic oxidation reactions of BH4- is involved with a novel and complex reaction system of three hydrogen valence state transformation among protide (H-) - protium (Ho*) -proton (H+), which related to borohydride direct electrochemical oxidation and hydrolysis reaction with hydrogen evolution followed hydrogen electrochemical oxidation reaction. The character of anodic oxidation of borohydride depends on not only the electrocatalyst but also reaction conditions. The key for DBFC developing is to depress hydrogen evolution and reduce costs of anode catalysts. In this article, reported anode electrocatalysts of DBFC’s as well as mechanism details of borohydride oxidation reaction are reviewed, and main issues for further research works are summed up .

Contents
1 Introduction
2 Noble metal catalyst
2.1 Pt catalyst
2.2 Pd catalyst
2.3 Au catalyst
2.4 Ag catalyst
3 Non-noble metal catalyst
3.1 Ni catalyst
3.2 Cu catalyst
4 Hydrogen storage alloy catalyst
5 Alloy catalyst
6 Conclusions and outlook

CLC Number: 

[1 ] Appely A J. Energy,1996,21: 521—653
[2 ] Raman R K,Choudhury N A,Shukla A K. Electrochem. Solid
State Lett. ,2004,7(12) : A488—A491
[3 ] Lakeman J B,Rose A,Pointon K D,Browning D J,Lovell K V,
Waring S C,Horsfall J A. J. Power Sources,2006,162: 765—
772
[4 ] Raman R K,Prashant S K,Shukla A K. J. Power Sources,
2006,162: 1073—1076
[5 ] Gu L F,Luo N,Miley G H. J. Power Sources,2007,173(1) :
77—85
[6 ] Chatenet M,Micound F,Roche I,Chainet E. Electrochim.
Acta,2006,51(25) : 5459—5467
[7 ] Meerakker J E A M. J. Appl. Electrochem. ,1981,11: 387—
393,395—400
[8 ] Izumi O,Osamu W,Shiro H. J. Electrochem. Soc. ,1985,132
(10) : 2323—2330
[9 ] Martins J I,Nunes M C,Koch R,Martins L,Bazzaoui M.
Electrochim. Acta,2007,52(23) : 6443—6449
[10] Kreevoy M M,Jacobson R W. Ventron Alembic,1979,15: 2—
3
[11] Li Z P,Liu B H,Arai K,Morigazaki N,Suda S. J. Alloys
Compd. ,2003,356 /357: 469—474
[12] Liu B H,Li Z P,Suda S. J. Electrochem. Soc. ,2003,150
(3) : A398—A402
[13] Kim J H,Kim H S,Kang Y M,Song M S,Rajendran S,Han S
C,Jung D H,Leea J Y. J. Electrochem. Soc. ,2004,151
(7) : A1039—A1043
[14] Jamard R,Latour A,Salomon J,Capron P,Martinent-Beaumont
A. J. Power Sources,2008,176: 287—292
[15] Verma A,Jha A K,Basu S. J. Power Sources,2005,141(1) :
30—34
[16] Indig M E,Snuder R N. J. Electrochem. Soc. ,1962,109:
1104—1106
[17] Liu B H, Li Z P, Suda S. Electrochim. Acta,2004,49:
3097—3105
[18] Elder J P,Hickling A. Trans. Faraday Soc. ,1962,58: 1852—
1864
[19] Concha B M, Chatenet M. Electrochim. Acta, 2009, 54:
6119—6129
[20] Concha B M, Chatenet M. Electrochim. Acta, 2009, 54:
6130—6139
[21] Celik C,San F G B,Sarac H I. J. Power Sources,2008,185:
197—201
[22] Yang J Q,Liu B H,Wu S. J. Power Sources,2009,194:824—829
[23] Cheng H,Scott K. J. Power Sources,2006,160: 407—412
[24] Leon C P,Walsh F C,Rose A,Lakeman J B,Browning D J,
Reeve R W. J. Power Sources,2007,164: 441—448
[25] Mirkin M V,Yang H,Bard A J. J. Electrochem. Soc. ,1992,
139(8) : 2212—2217
[26] Gyenge E. Electrochim. Acta,2004,49: 965—978
[27] Okinaka Y. J. Electrochem. Soc. ,1973,120(6) : 739—744
[28] Rostamikia G,Janik M J. J. Electrochem. Soc. ,2009,156
(1) : B86—B92
[29] Atwan M H,Northwood D O,Gyenge E L. Int. J. Hydrogen
Energy,2007,32: 3116—3125
[30] Sanli E,Celikkan H,Uysala B Z,Aksu M L. Int. J. Hydrogen
Energy,2006,31(13) : 1920—1924
[31] Sanli E,Uysal B Z,Aksu M L. Int. J. Hydrogen Energy,
2008,33: 2097—2104
[32] Sanli E,Celikkan H,Uysal B Z,Aksu M L. ECS Transactions,
The Electrochemical Society,2007,5(1) : 137—145
[33] Liu B H,Li Z P,Arai K,Suda S. Electrochim. Acta,2005,
50: 3719—3725
[34] Wang K L,Lu J T,Zhuang L. J. Phys. Chem. C,2007,111:
7456—7462
[35] 段东红( Duan D H) ,孙彦平( Sun Y P) . 化工学报( CIESC
Journal) ,2009,60(11) : 2862—2868
[36] 段东红(Duan D H) ,孙彦平( Sun Y P) . 太原理工大学学报
( Journal of Taiyuan University of Technology) ,2009,40 ( 3 ) :
217—221
[37] Li Z P,Liu B H,Arai K,Suda S. J. Electrochem. Soc. ,
2003,50(7) : A868—A872
[38] Choudhury N A,Raman R K,Sampath S,Shukla A K. J.
Power Sources,2005,143(1 /2) : 1—8
[39] Lee S M, Kim J H, Lee H H, Lee P S, Lee J Y. J.
Electrochem. Soc. ,2002,149 (5) : A603—A606
[40] Wang L B,Ma C A,Sun Y M,Suda S. J. Alloy Compd. ,
2005,391(1 /2) : 318—322
[41] Wang L B,Ma C A,Mao X B,Sheng J F,Bai F Z,Tang F.
Electrochem. Commun. ,2005,7: 1477—1481
[42] Wang L B,Ma C A,Mao X B. J. Alloys Compd. ,2005,397:
313—316
[43] Liu B H,Suda S. J. Alloys Compd. ,2008,454: 280—285
[44] Amendola S C,Onnerud P,Kelly M T,Petillo P J,Sharp-
Goldman S L,Binder M. J. Power Sources,1999,84: 130—
133
[45] Atwan M H,Macdonald C L B,Northwood D O,Gyenge E L.
J. Power Sources,2006,158(1) : 36—44
[46] Gyenge E,Atwan M,Northwood D O. J. Electrochem. Soc. ,
2006,153(1) : A150—A158
[47] 冯瑞香( Feng R X) ,曹余良( Cao Y L) ,艾新平(Ai X P) ,杨
汉西(Yang H X) . 物理化学学报( Acta Phys. Chim. Sin. ) ,
2007,23(6) : 932—934
[48] Feng R X,Dong H,Cao Y L,Ai X P,Yang H X. Int. J.
Hydrogen Energy,2007,32(17) : 4544—4549
[49] 孙彦平( Sun Y P) ,段东红(Duan D H) ,崔文科( Cui W K) .
CN101013752,2007

[1] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[2] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[3] Changle Yue, Wenjing Bao, Jilei Liang, Yunqi Liu, Daofeng Sun, Yukun Lu. Application of POMs-Based Sulfided Catalyst in Hydrodesulfurization and Hydrogen Evolution by Electrolysis of Water [J]. Progress in Chemistry, 2022, 34(5): 1061-1075.
[4] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[5] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[6] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[7] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[8] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[9] Yin Xie, Liyang Zhang, Peijin Ying, Jiacheng Wang, Kuan Sun, Meng Li. Intensified Field-Effect of Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(9): 1571-1585.
[10] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[11] Jiaqi Han, Zhida Li, Deqiang Ji, Dandan Yuan, Hongjun Wu. Single-Atom-Modified MoS2 for Efficient Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(12): 2392-2403.
[12] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[13] Wei Kang, Lu Li, Qing Zhao, Cheng Wang, Jianlong Wang, Yue Teng. Application of New Hydrogen and Oxygen Evolution Electrochemical Catalysts for Solid Polymer Water Electrolysis System [J]. Progress in Chemistry, 2020, 32(12): 1952-1977.
[14] Xianwei Lv, Zhongpan Hu, Hui Zhao, Yuping Liu, Zhongyong Yuan. Self-Supporting Transition Metal Phosphides as Electrocatalysts for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2018, 30(7): 947-957.
[15] Chenhui Wei, Heyun Fu, Xiaolei Qu, Dongqiang Zhu. Environmental Processes of Dissolved Black Carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052.