中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (09): 1701-1708 Previous Articles   Next Articles

• Review •

Preparation and Catalytic Performance of the Transition Metal Phosphides

Liu Lihua  Li Guangci   Liu Di   Liu Yunqi   Liu Chenguang**   

  1. (State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis of CNPC, China University of Petroleum, Qingdao 266555, China )
  • Received: Revised: Online: Published:
  • Contact: Liu Chenguang E-mail:cgliu@upc.edu.cn
PDF ( 3514 ) Cited
Export

EndNote

Ris

BibTeX

The diminishing quality of oil feedstocks coupled with increasingly more stringent environmental regulations limiting the content of sulfur in transportation fuels have given rise to a need for improved hydroprocessing technology. Transition metal phosphides have attracted attention not only because they have excellent reaction catalytic selectivity for deep hydrodesulfurization and hydrodenitrogenation, but also because they are much more stable than metal carbides and nitrides with regard to hydrogen sul?de. The present article intends to review recent progress in the fabrication, catalytic performance and active phase of transition metal phosphides. A surface phosphosul?de phase may be formed while the bulk structure of the phosphides is retained under hydrodesulfurization reaction conditions. The surface phosphosul?de phase may be responsible for the high and stable activity of the phosphide catalyst. These phosphide based catalysts are becoming an interesting and promising replacement for the traditional bimetallic systems such as Mo or W sul?de catalysts promoted with Ni or Co in this type of reaction. This approach provides considerable economical advantages as well as enhanced catalyst life times and higher activity. Contents 1 Introduction 2 The synthetic methods of the transition metal phosphides 2.1 The transition metal phosphides prepared by the hydrothermal method 2.2 The transition metal phosphides prepared by the temperature-programmed reduction 2.3 The transition metal phosphides prepared by the decomposition of hypophosphite precursor 3 The catalytic performance of the transition metal phosphides 4 Summary and perspective

CLC Number: 

[1 ] 李大东( Li D D ) ,蒋福康( Jiang F K ) . 中国工程科学
( Chinese Engineering Science) ,2003,5(3) : 6—14
[2 ] Chianelli R R,Siadati M H,de la Rosa M P,Berhault G,
Wilcoxon J P, Bearden R,Abrams B L. Catal. Rev. Sci.
Eng. ,2006,48(1) : 1—41
[3 ] Skrabalak S E,Suslick K S. J. Am. Chem. Soc. ,2005,127
(28) : 9990—9991
[4 ] Toba M,Miki Y,Kanda Y,Matsui T,Harada M,Yoshimura
Y. Catal. Today,2005,104(1) : 64—69
[5 ] Ishihara A,Mochizuki H,Lee J,Qian E W,Kabe T,Tatsumi
Y,Umehara K. J. Japan Petrol. Inst. ,2005,48 (3 ) : 137—
144
[6 ] Olivas A,Verduzco R,Alonso G,Fuentes S. Prepr. ACS Div.
Petro. Chem. ,2005,50(4) : 372—374
[7 ] Sun M,Nicosia D,Prins R. Catal. Today,2003,86 ( 1 /4 ) :
173—189
[8 ] An G,Chai Y,Zhong H,Zhang C,Liu C. Prepr. ACS Div.
Petro. Chem. ,2005,50(3) : 344—346
[9 ] Sun M,Nelson A E,Adjaye J. J. Phys. Chem. B,2006,110
(5) : 2310—2317
[10] Levy R L,Boudart M. Science,1973,181: 547—549
[11] Park J,Koo B,Hwang Y,Bae C,An K,Park J G,Park H M,
Hyeon T. Angew. Chem. Int. Ed. ,2004,43 ( 17 ) : 2282—
2285
[12] Qian C,Kim F,Ma L,Tsui F,Yang P,Liu J. J. Am. Chem.
Soc. ,2004,126 (4) : 1195—1198
[13] Park J,Koo B,Yoon K Y,Hwang Y,Kang M,Park J G,
Hyeon T. J. Am. Chem. Soc. ,2005,127(23) : 8433—8440
[14] Guan J,Wang Y,Qin M,Yang Y,Li X,Wang A. J. Solid
State Chem. ,2009,182(6) : 1550—1555
[15] Wang A,Qin M,Guan J,Wang L,Guo H,Li X,Wang Y,
Prins R,Hu Y. Angew. Chem. Int. Ed. ,2008,47 ( 32 ) :
6052—6054
[16] Liu S L,Liu X Z,Xu L Q,Qian Y T,Ma X C. J. Cryst.
Growth,2007,304(2) : 430—434
[17] Chen S C. Important Inorganic Reactions,3rd ed. Shanghai:
Shanghai Science and Technology Press,1994,1765
[18] Gao S M,Lu J,Chen N,Zhao Y,Xie Y. Chem. Commun. ,
2002,24: 3064—3065
[19] Ni Y H,Tao A,Hu G Z,Cao X F,Wei X W,Yang Z S.
Nanotech. ,2006,17: 5013—5018
[20] Hou H,Yang Q,Tan C,Ji G,Gu B,Xie Y. Chem. Lett. ,
2004,33 (10) : 1272—1273
[21] Hou H,Peng Q,Zhang S,Guo Q,Xie Y. Eur. J. Inorg.
Chem. ,2005 (13) : 2625—2630
[22] Wang X,Han K,Gao Y,Wan F,Jiang K. J. Cryst. Growth,
2007,307 (1) : 126—130
[23] Li W,Dhandapani B,Oyama S T. Chem. Lett. ,1998,27(3) :
207—208
[24] Clark P,Li W,Oyama S T. J. Catal. ,2001,200: 140—147
[25] Wang X,Clark P,Oyama S T. J. Catal. ,2002,208: 321—
331
[26] Stinner C,Prins R,Weber T. J. Catal. ,2001,202: 187—194
[27] Cheng R H,Shu Y,Li L,Zheng M,Wang X,Wang A,Zhang
T. Appl. Catal. A: Gen. ,2007,316(2) : 160—168
[28] Wang R,Smith K J. Appl. Catal. A: Gen. ,2009,361(1 /2) :
18—25
[29] Takahashi R, Sato S, Sodesawa T, Suzuki M, Ichikuni N.
Microporous Mesoporous Mater. ,2003,66(2 /3) : 197—208
[30] Clark P A,Oyama S T. J. Catal. ,2003,218(1) : 78—87
[31] Philliops D C,Sawhill S J,Self R,Bussell M E. J. Catal. ,
2002,207(2) : 266—273
[32] Kawai T,Sato S,Suzuki S,Chun W,Asakura K,Bando K,
Matsui T,Yoshimura Y,Kubota T,Okamoto Y,Lee Y,Oyama
S T. Chem. Lett. ,2003,32(10) : 956—957
[33] Shu Y,Oyama S T. Carbon,2004,43: 1517—1532
[34] Wang A,Ruan L,Teng Y,Li X,Lu M,Ren J,Wang Y,Hu
Y. J. Catal. ,2005,229(2) : 314—321
[35] Stinner C,Tang Z,Haouas M,Weber T,Prins R. J. Catal. ,
2002,208(2) : 456—466
[36] Clark P,Li W,Oyama S T. J. Catal. ,2001,200 (1 ) : 140—
147
[37] Wang X,Clark P,Oyama S T. J. Catal. ,2002,208 ( 2 ) :
321—331
[38] Clark P,Wang X,Oyama S T. J. Catal. ,2002,207 ( 2 ) :
256—265
[39] Sawhill S J,Phillips D C,Bussell M E. J. Catal. ,2003,215
(2) : 208—219
[40] Rodriguez J A,Kim J Y,Hanson J C,Sawhill S J,Bussell M E.
J. Phys. Chem. B,2003,107(26) : 6276—6285
[41] Yang S,Liang C,Prins R. J. Catal. ,2006,237 ( 1 ) : 118—
130
[42] Berhault G, Afanasiev P, Loboue H, Geantet C, Cseri T,
Pichon C,Guillot-Deudon C,Lafond A. Inorg. Chem. ,2009,
48(7) : 2985—2992
[43] Sawhill S J,Layman K A,van Wyk D R,Engelhard M H,Wang
C,Bussell M E. J. Catal. ,2005,231(2) : 300—313
[44] Mangnus P J,van Veen J A R,Eijsbouts S. Appl. Catal. ,
1990,61(1) : 99—122
[45] Stinner C,Tang Z,Haouas M,Weber T,Prins R. J. Catal. ,
2002,208(2) : 456—466
[46] Iwamoto R,Grimblot J. Adv. Catal. ,1999,44: 417—503
[47] Shi G J,Shen J Y. J. Mater. Chem. ,2009,19: 2295—2297
[48] Guan Q X,Li W,Zhang M H,Tao K Y. J. Catal. ,2009,263
(1) : 1—3
[49] Shi G J,Shen J Y. Catal. Commun. ,2009,10: 1693—1696
[50] Brock S L,Perera S C,Stamm K L. Chem. Eur. J. ,2004,10
(14) : 3364—3371
[51] Gregg K A,Perera S C,Lawes G,Shinozaki S,Brock S L.
Chem. Mater. ,2006,18(4) : 879—886
[52] Ji N,Zhang T,Zheng M,Wang A,Wang H,Wang X,Chen J
G. Angew. Chem. Int. Ed. ,2008,47(44) : 8510—8513
[53] Liu X G,Chen J X,Zhang J Y. Ind. Eng. Chem. Res. ,2008,
47(15) : 5362—5368
[54] Zhou S J,Chen J X,Liu X G,Zhang J Y. Chinese Journal of
Catalysis,2007,28(6) : 498—500
[55] Liu X G,Chen J X,Zhang J Y. Catal. Commun. ,2007,8
(12) : 1905—1909
[56] Chen J,Zhou S,Ci D,Zhang J,Wang R,Zhang J. Ind. Eng.
Chem. Res. ,2009,48(8) : 3812—3819
[57] Robinson W R A M,van Gastel J N M,Koranyi T I,Eijsbouts
S,van der Kraan A M,van Veen J A R,de Beer V H J. J.
Catal. ,1996,161 (2) : 539—550
[58] Stinner C,Prins R,Weber T. J. Catal. ,2001,202(1) : 187—
194
[59] Wang X,Clark P,Oyama S T. J. Catal. ,2002,208 ( 2 ) :
321—331
[60] Oyama S T. J. Catal. ,2003,216(1 /2) : 343—352
[61] Oyama S T,Wang X,Lee Y K,Bando K,Requejo F G. J.
Catal. ,2002,210(1) : 207—217
[62] Oyama S T,Wang X,Lee Y K,Chun W J. J. Catal. ,2004,
221(2) : 263—273
[63] Prins R,Jian M,Fleehsenha M. Polyhedron,1997,16 ( 18 ) :
3235—3246
[64] Lu M H,Wang A J,Li X,Duan X,Teng Y,Wang Y,Song C,
Hu Y. Energy & Fuels,2007,21(2) : 554—560
[65] Satterfield C N,Cocchetto J F. Ind. Eng. Chem. Proc. Des.
Dev. ,1981,20(1) : 53—62
[66] Nava R,Morales J,Alonso G,Ornelas C,Pawelec B,Fierro J L
G. Appl. Catal. A,2007,321(1) : 58—70
[67] Maity S K,Flores G A,Ancheyta J,Rana M S. Catal. Today,
2008,130(2 /4) : 374—381
[68] Lewis J M,Kydd R A,Boorman P M,Rhyn P. Appl. Catal. A,
1992,84(2) : 103—121
[69] Prins R. Adv. Catal. ,2002,46: 399—464
[70] Lélias M A,Kooyman P J,Mariey L,Oliviero L,Travert A,van
Gestel J,van Veen J A R,Mange F. J. Catal. ,2009,267(1) :
14—23
[71] Stinner C,Prins R,Weber T. J. Catal. ,2001,202(1) : 187—
194
[72] Yang S,Liang C,Prins R. J. Catal. ,2006,237 ( 1 ) : 118—
130
[73] Layman K A,Bussell M E. J. Phys. Chem. B,2004,108
(30) : 10930—10941
[74] Oyama S T,Wang X,Lee Y K,Bando K,Requejo F G. J.
Catal. ,2002,210(1) : 207—217
[75] Oyama S T,Wang X,Lee Y K,Chun W J. J. Catal. ,2004,
221(2) : 263—273
[76] Sun F,Wu W,Wu Z,Guo J,Wei Z,Yang Y,Jiang Z,Tian
F,Li C. J. Catal. ,2004,228(2) : 298—310
[77] Nelson A E,Sun M,Junaid A S M. J. Catal. ,2006,241(1) :
180—188
[78] Oyama S T,Lee Y K. J. Catal. ,2008,258(2) : 393—400
[79] Rundqvist S. Acta Chem. Scand. ,1962,16: 992—998
[80] Guerin P R,Sergent M. Acta Crystallogr. Sect. B,1977,33:
2820—2823

[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[3] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[4] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[5] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[6] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[7] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[8] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[9] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[10] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[11] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[12] Ying Geng, Mohe Zhang, Jin Fu, Ruisha Zhou, Jiangfeng Song. MOF-74 and Its Compound: Diverse Synthesis and Broad Application [J]. Progress in Chemistry, 2021, 33(12): 2283-2307.
[13] Wen Zhou, Xin Zhang, Hongpeng Ma, Jie Xu, Bin Guo, Panxin Li. Chemical and Physical Mechanism and Method of Preparation of Thermoplastic Starch [J]. Progress in Chemistry, 2021, 33(11): 1972-1982.
[14] Runtian Wang, Chunli Liu, Zhenbin Chen. Imprinted Composite Membranes [J]. Progress in Chemistry, 2020, 32(7): 989-1002.
[15] Jianlei Qi, Qinqin Xu, Jianfei Sun, Dan Zhou, Jianzhong Yin. Synthesis, Characterization and Analysis of Graphene-Supported Single-Atom Catalysts [J]. Progress in Chemistry, 2020, 32(5): 505-518.