中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (09): 1687-1700 Previous Articles   Next Articles

• Review •

Steam Reforming of Bio-Oil or Its Model Compounds for Hydrogen Production

Hu Xun1,2   Lv Gongxuan1**   

  1. (1. State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000,China; 2. Graduate School of Chinese Academy of Sciences, Beijing 100039,China)
  • Received: Revised: Online: Published:
  • Contact: Lv Gongxuan E-mail:gxlu@lzb.ac.cn
PDF ( 1648 ) Cited
Export

EndNote

Ris

BibTeX

Steam reforming of the renewable resource, bio-oil or its model compounds, for hydrogen production has attracted much attention due to shortage of energy resources and serious environmental problems. This paper summarize the main developments in steam reforming of bio-oil and its model compounds including ethanol, acetic acid, ethylene glycol, glycerol, glucose and phenol. The typical reforming catalysts such as the noble catalysts and transition metal catalysts have been focused on. Some novel reforming processes such as aqueous-phase reforming are also introduced in a detailed manner. In addition, the reaction routes in steam reforming of ethanol, acetic acid, ethylene glycol and glucose have been analyzed. Furthermore, the main problems encountered in steam reforming reactions, which include the production of by-products and the formation of carbon deposits, are also analyzed in detail, and some possible solutions are proposed.

Contents 
1 Introduction
2 Production of hydrogen from biomass
2.1 Steam reforming of bio-oil for hydrogen production
2.2 Steam reforming of ethanol for hydrogen production
2.3 Steam reforming of acetic acid for hydrogen production
2.4 Steam reforming of ethylene glycol for hydrogen production
2.5 Steam reforming of glycerol for hydrogen production
2.6 Steam reforming of glucose for hydrogen production
2.7 Steam reforming of other bio-oil derived compounds for hydrogen production
3 Conclusions and outlook

CLC Number: 

[1 ] 吴川(Wu C) ,张华民( Zhang H M) ,衣宝廉(Yi B L) . 化学
进展( Progress in Chemistry) ,2005,17: 423—429
[2 ] 黄昀(Huang J) ,吴季怀(Wu J H) . 化学进展( Progress in
Chemistry) ,2006,18: 861—869
[3 ] 晏波(Yan B) ,韦朝海(Wei C H) . 化学进展( Progress in
Chemistry) ,2008,20: 1553—1561
[4 ] 徐占林(Xu Z L) ,毕颖丽( Bi Y L) ,甄开吉( Zhen K J) . 化
学进展( Progress in Chemistry) ,2000,12: 121—130
[5 ] 姜洪涛( Jiang H T) ,李会泉( Li H Q) ,张懿( Zhang Y) . 化学
进展( Progress in Chemistry) ,2006,18: 1270—1277
[6 ] 张景成( Zhang J C) ,殷文奎( Yin W K) ,商红岩( Shang H
Y) 等. 分子催化( J. Mol. Catal. ( China) ) ,2008,22: 148—
152
[7 ] 鲁勋( Lu X) ,罗来涛( Luo L T) ,程新孙( Cheng X S) . 分子
催化( J. Mol. Catal. ( China) ) ,2008,22: 230—235
[8 ] 王丰(Wang F) ,徐贤伦(Xu X L) . 分子催化( J. Mol. Catal.
( China) ) ,2008,22: 418—423
[9 ] 向永生(Xiang Y S) ,赵旭涛( Zhao X T) ,马建泰(Ma J T)
等. 分子催化( J. Mol. Catal. ( China) ) ,2009,23: 282—290
[10] 石秋杰( Shi Q J) ,杨静(Yang J) ,李仓友( Li C Y) . 分子催
化( J. Mol. Catal. ( China) ) ,2009,23: 135—138
[11] 肖秀杰(Xiao X J) ,王丹红(Wang D H) ,张明慧( Zhang M
H) 等. 分子催化( J. Mol. Catal. ( China) ) ,2009,23: 112—
117
[12] 贺丹(He D) ,杨运泉(Yang Y Q) ,周恩深( Zhou E S) 等. 分
子催化( J. Mol. Catal. ( China) ) ,2009,23: 24—31
[13] 孟琦(Meng Q) ,李和兴( Li H X) . 分子催化( J. Mol. Catal.
( China) ) ,2009,23: 57—61
[14] 郑纯智( Zheng C Z) ,张国华( Zhang G H) ,赵德建( Zhao D
J) 等. 分子催化( J. Mol. Catal. ( China) ) ,2009,23: 323—
328
[15] 梁旭( Liang X) ,李海涛( Li H T) ,张因( Zhang Y) 等. 分子
催化( J. Mol. Catal. ( China) ) ,2009,23: 203—208
[16] 曲莎莎( Qu S S) ,陈宵格( Chen X G) . 分子催化( J. Mol.
Catal. ( China) ) ,2009,23: 222—227
[17] 靳广洲( Jin G Z) ,赵如松( Zhao R S) ,罗运强( Luo Y Q) 等.
分子催化( J. Mol. Catal. ( China) ) ,2008,22: 481—486
[18] 慕新元(Mu X Y) ,胡斌(Hu B) ,朴东鹤( Piao D H) 等. 分子
催化( J. Mol. Catal. ( China) ) ,2009,23: 493—498
[19] 包建国( Bao J G) ,杨运泉(Yang Y Q) ,王威燕(Wang W Y)
等. 分子催化( J. Mol. Catal. ( China) ) ,2009,23: 558—563
[20] 徐东彦(Xu D Y) ,张华民( Zhang H M) ,叶威(Ye W) . 化学
进展( Progress in Chemistry) ,2007,19: 1598—1605
[21] 张宁( Zhang N) ,宋丽丽( Song L L) ,李凤仪( Li F Y) . 分子
催化( J. Mol. Catal. ( China) ) ,2007,21: 63—66
[22] 毕迎普( Bi Y P) ,耿东生( Geng D S) ,毕玉水( Bi Y S) ,吕
功煊( Lv G X) . 分子催化( J. Mol. Catal. ( China) ) ,2005,
19: 98—103
[23] 张文强( Zhang W Q) ,于波( Yu B) ,陈靖( Chen J) ,徐景明
(Xu J M) . 化学进展( Progress in Chemistry ) ,2008,20:
778—787
[24] 彭必先( Peng B X) ,甘昌胜( Gan C S) ,闫天堂( Yan T T) .
化学进展( Progress in Chemistry) ,2004,16: 414—421
[25] 许珊(Xu S) ,王晓来(Wang X L) ,赵睿( Zhao R) . 化学进展
( Progress in Chemistry) ,2003,15: 141—150
[26] 柳海涛( Liu H T) ,田宏( Tian H) ,王晓来(Wang X L) . 分子
催化( J. Mol. Catal. ( China) ) ,2007,21: 304—307
[27] 高群仰( Gao Q Y) ,吕功煊( Lv G X) . 分子催化( J. Mol.
Catal. ( China) ) ,2008,22: 294—301
[28] 常永胜( Chang Y S) ,马爱增(Ma A Z) ,蔡迎春( Cai Y C) .
分子催化( J. Mol. Catal. ( China) ) ,2009,23: 162—167
[29] 张平( Zhang P) ,于波(Yu B) ,陈靖( Chen J) ,徐景明( Xu J
M) . 化学进展( Progress in Chemistry) ,2005,17: 643—650
[30] 吴玉琪(Wu Y Q) ,吕功煊( Lv G X) ,李树本( Li S B) . 分子
催化( J. Mol. Catal. ( China) ) ,2004,18: 125—130
[31] Hu X,Lv G X. Catal. Commun. ,2009,10: 1633—1637
[32] 熊光伟(Xiong G W) ,罗来涛( Luo L T) ,李长全( Li C Q) .
分子催化( J. Mol. Catal. ( China) ) ,2009,23: 151—156
[33] 王卫平(Wang W P) ,吕功煊( Lv G X) . 分子催化( J. Mol.
Catal. ( China) ) ,2009,23: 545—550
[34] 李苑( Li Y) ,罗来涛( Luo L T) ,李长全( Li C Q) . 分子催化
( J. Mol. Catal. ( China) ) ,2009,23: 448—453
[35] 赵宁( Zhao N) ,尹燕华(Yin Y H) ,王新喜(Wang X X) . 分
子催化( J. Mol. Catal. ( China) ) ,2009,23: 346—350
[36] 马重华(Ma C H) ,胡勋(Hu X) ,吕功煊( Lv G X) . 分子催
化( J. Mol. Catal. ( China) ) ,2008,22: 308—314
[37] 毛丽萍(Mao L P) ,胡勋(Hu X) ,吕功煊( Lv G X) . 分子催
化( J. Mol. Catal. ( China) ) ,2007,21: 385—390
[38] 王卫平(Wang W P) ,吕功煊( Lv G X) . 化学进展( Progress
in Chemistry) ,2003,15: 74—78
[39] Lv G X,Li S B. Int. J. Hydrogen Energy,1992,17: 767—770
[40] Tang Z C,Geng D S,Lv G X. Mater. Lett. ,2005,59: 1567—
1570
[41] Wang W P,Wang Z F,Ding Y,et al. Catal. Lett. ,2002,81:
63—68
[42] Wang Z F,Wang W P,Lu G X. Int. J. Hydrogen Energy,
2003,28: 151—158
[43] Li Q Y,Chen L,Lu G X. J. Phys. Chem. C,2007,111:
11494—11499
[44] Jin Z L,Zhang X J,Lu G X,et al. J. Mol. Catal. A-Chem. ,
2006,259: 275—280
[45] Wang D,Czernik S,Montane D,Mann M,Chornet E. Ind.
Eng. Chem. Res. ,1997,36: 1507—1518
[46] Czernik S,French R,Feik C,Chornet E. Ind. Eng. Chem.
Res. ,2002,41: 4209—4215
[47] Garcia L,French R,Czernik S,Chornet E. Appl. Catal. A:
Gen. ,2000,201: 225—239
[48] Czernik S,French R,Feik C,Chornet E. Ind. Eng. Chem.
Res. ,2002,41: 4209—4215
[49] Kechagiopoulos P, Voutetakis S, Lemonidou A, Vasalos A.
Energy Fuels,2006,20: 2155—2163
[50] Marquevich M,Coll R,Montane D. Ind. Eng. Chem. Res. ,
2000,39: 2140—2147
[51] Kinoshita C,Turn S. Int. J. Hydrogen Energy,2003,28:
1065—1071
[52] Wang Z X,Pan Y,Dong T,Zhu X F,Kan T,Yuan L X,
Torimoto Y,Sadakata M,Li Q X. Appl. Catal. A: Gen. ,
2007,320: 24—34
[53] 王兆祥(Wang Z X) ,朱锡锋( Zhu X F) ,潘越( Pan Y) ,李全
新( Li Q X) . 中国科学技术大学学报( Journal of University of
Science and Technology of China) ,2006,36: 458—460
[54] 吴层(Wu C) ,颜涌捷(Yan Y J) ,张素平( Zhang S P) ,沈重
耀( Shen C Y) . 太阳能学报( Acta Energiae Solaris Sinica) ,
2008,29: 1144—1148
[55] 隋淼( Sui M) ,许庆利(Xu Q L) ,吴层(Wu C) ,颜涌捷(Yan
Y J) . 石油化工( Petrochemical Technology) ,2009,38: 476—
481
[56] 周明( Zhou M) ,许庆利( Xu Q L) ,蓝平( Lan P) ,隋淼( Sui
M) , 颜涌捷( Yan Y J ) . 河南化工( Henan Chemical
Industry) ,2009,26: 22—24
[57] Iojoiu E,Domine M,Davidian T,Guilhaume N,Mirodatos C.
Appl. Catal. A: Gen. ,2007,323: 147—161
[58] Garcia E,Laborde M. Int. J. Hydrogen Energy,1991,16:
307—312
[59] 杨宇( Yang Y) ,马建新( Ma J X) . 华东理工大学学报
( Journal of East China University of Science and Technology) ,
2006,32: 1081—1085
[60] Haryanto A, Fernando S,Murali N,Adhikari S. Energy &
Fuels,2005,19: 2098—2106
[61] Marino F,Cerrella E,Duhalde S,Jobbagy M,Laborde M. Int.
J. Hydrogen Energy,1998,23: 1095—1101
[62] Marino F,Boveri M,Baronetti G,Laborde M. Int. J. Hydrogen
Energy,2001,26: 665—668
[63] Cavallaro S,Freni S. Int. J. Hydrogen Energy,1996,21:
465—469
[64] Luengo C,Ciampi G,Cencig M,Steckelberg C,Laborde M.
Int. J. Hydrogen Energy,1992,17: 677—681
[65] Comas J,Mario F,Laborde M,Amadeo N. Chem. Eng. J. ,
2004,98: 61—68
[66] Freni S,Cavallaro S,Mondello N,Spadaro L,Frusteri F. J.
Power Sources,2002,108: 53—57
[67] Fatsikostas A,Verykios X. J. Catal. ,2004,225: 439—452
[68] Haga F,Nakajima T,Miya H,Mishima S. Catal. Lett. ,1997,
48: 223—327
[69] Haga F,Nakajima T,Miya H,Mishima S. Catal. Lett. ,1998,
63: 253—259
[70] Llorce J,Homs N,Sales J,Piscina P. J Catal. ,2002,209:
306—317
[71] Breen J,Bruch R,Coleman H. Appl. Catal. B: Environ. ,
2002,39: 65—74
[72] Liguras D, Kondarides D, Verylios X. Appl. Catal. B:
Environ. ,2003,43: 345—354
[73] Aupretre F,Descorme C,Duprez D. Catal. Commun. ,2002,
3: 263—267
[74] Skála T,Veltruská K,Moroseac M,Matolínová I,Korotchenkov
G,Matolín V. Appl. Sur. Sci. ,2003,205: 196—205
[75] Sheng P Y,Yee A,Bowmaker G,Idriss H. J. Catal. ,2002,
208: 393—403
[76] Houtman C,Bartcau M. J. Catal. ,1991,130: 528—546
[77] Fatsikostas A,Verykios X. J. Catal. ,2004,225: 439—452
[78] Wang D,Montane D, Chornet E. Appl. Catal. A: Gen. ,
1996,143: 245—270
[79] Wang D,Czernik S,Montane D,Chornet E. Ind. Eng. Chem.
Res. ,1997,36: 1507—1518
[80] Marquevich M,Czernik S,Chornet E,Montane D. Energy &
Fuels,1999,13: 1160—1166
[81] Galdámez J,García L,Bilbao R. Energy & Fuels,2005,19:
1133—1142
[82] Bimbela F,Oliva M,Ruiz J,García L,Arauzo J. J. Anal.
Appl. Pyrolysis,2007,79: 112—120
[83] Hu X,Lu G X. Chem. Lett. ,2006,35: 452—453
[84] Hu X,Lu G X. J. Mol. Catal. A: Chem. ,2007,261: 43—48
[85] Hu X,Lu G X. Appl. Catal. B: Environ. ,2009,88: 376—
385
[86] Basagiannis A,Verykios X. Appl. Catal. A: Gen. ,2006,
308: 182—193
[87] Basagiannis A,Verykios X. Int. J. Hydrogen Energy,2007,
32: 3343—3355
[88] Basagiannis A,Verykios X. Appl. Catal. B: Environ. ,2008,
82: 77—88
[89] Vagia E,Lemonidou A. Appl. Catal. A: Gen. ,2008,351:
111—121
[90] Rioche C,Kulkarni S,Meunier F,Breen J,Burch R. Appl.
Catal. B: Environ. ,2005,61: 130—139
[91] Medrano J,Oliva M,Ruiz J,Garcia L,Arauzo J. Int. J.
Hydrogen Energy,2008,33: 4387—4396
[92] Takanabe K,Aika K,Seshan K,Lefferts L. J. Catal. ,2004,
227: 101—108
[93] Takanabe K,Aika K,Seshan K,Baba T,Seshan K,Lefferts L.
J. Catal. ,2006,243: 263—269
[94] Takanabe K,Aika K,Seshan K,Seshan K,Lefferts L. Chem.
Eng. J. ,2006,120: 133—137
[95] Shabaker J,Huber G,Davda R,Cortright R,Dumesic J. Catal.

[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[6] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[7] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[8] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[9] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[10] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[11] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[12] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[13] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[14] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[15] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.