中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (08): 1603-1609 Previous Articles   Next Articles

• Review •

Preparation of 5-hydroxymethylfurfural by Dehydration of Carbohydrates

Li Yan  Wei Zuojun1**   Chen Chuanjie1   Liu Yingxin2   

  1. (1. Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; 2. College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China)
  • Received: Revised: Online: Published:
  • Contact: Wei Zuojun E-mail:weizuojun@zju.edu.cn
PDF ( 3350 ) Cited
Export

EndNote

Ris

BibTeX

In this article, the recent research progress in the dehydration of Carbohydrates for preparation of 5-hydroxymethylfurfural(5-HMF) is summarized, including its dehydration mechanism and product distribution, catalysts and solvents used, the separation of 5-HMF, as well as a brief prospective on this research field. At present, the most effective catalyst is CrCl2/[EMIM] system, but separation the 5-HMF product is worthy to be concerned, especially the separation of 5-HMF from ionic liquid medium to make the latter reused.

Contents 
1 Introduction
2 Dehydration mechanism and product distribution 
2.1 Dehydration mechanism of fructose 
2.2 Dehydration mechanism of glucose 
3 Catalysts for carbonhydrates dehydration 
4 Solvent media for carbohydrate dehydration 
5 Separation of 5-HMF from reaction media 
6 Conclusion and perspective

CLC Number: 

[1 ] Zhao H B,Holladay J E,Brown H,et al. Science,2007,316:1597—1600
[2 ] Roman-Leshkov Y,Chheda J N,Dumesic J A. Science,2006,
312: 1933—1937
[3 ] Qi X H,Watanabe M,Aida T M, et al. Catal. Commun. ,
2008,9: 2244—2249
[4 ] Widegren J A,Finke R G. J. Mol. Catal. A: Chem. ,2003,
191: 187—207
[5 ] Barrett C J,Chheda J N,Huber G W,et al. Appl. Catal. B,
2006,66: 111—118
[6 ] Chheda J N,Dumesic J A. Catal. Today,2007,123: 59—70
[7 ] Hu S Q,Zhang Z F,Zhou Y X,et al. Green Chem. ,2008,
10: 1280—1283
[8 ] Kuster B F M,van der Baan H S. Carbohydr. Res. ,1977,54:
165—176
[9 ] Antal M J,Mok W S L,Richards G N. Carbohydr. Res. ,
1990,199: 91—109
[10] Amarasekara A S,Williams L D,Ebede C C. Carbohydr. Res. ,
2008,343: 3021—3024
[11] Binder J B,Raines R T. J. Am. Chem. Soc. ,2009,131:
1979—1985
[12] Moreau C,Durand R,Razigade S, et al. Appl. Catal. A,
1996,145: 211—224
[13] Tyrlik S K,Szerszen D,Olejnik M,et al. Carbohydr. Res. ,
1999,315: 268—272
[14] 庞斐( Pang F) ,吕惠生( Lv H S) ,张敏华( Zhang M H) . 化
学反应工程与工艺( Chemical Reaction Engineering and
Technology) ,2007,23: 55—60
[15] Armaroli T,Busca G,Carlini C,et al. J. Mol. Catal. A:
Chem. ,2000,151: 233—243
[16] Carlini C,Giuttari M,Galletti A M R,et al. Appl. Catal. A,
1999,183: 295—302
[17] Moreau C,Finiels A,Vanoye L. J. Mol. Catal. ,2006,253:
165—169
[18] Takeuchi Y,Jin F M,Tohji K,et al. J. Mater. Sci. ,2008,
43: 2472—2475
[19] Girisuta B,Janssen L P B M,Heeres H. J. Chem. Eng. Res.
Des. ,2006,84: 339—349
[20] Asghari F S,Yoshida H. Ind. Eng. Chem. Res. ,2006,45:
2163—2173
[21] Chen J D,Kuster B F M,Vanderwiele K. Biomass Bioenergy,
1991,1: 217—223
[22] Jow J,Rorrer G L,Hawley M C,et al. Biomass,1987,14:
185—194
[23] Asghari F S,Yoshida H. Carbohydr. Res. ,2006,341: 2379—
2387
[24] Benvenuti F,Carlini C,Patrono P,et al. Appl. Catal. A,
2000,193: 147—153
[25] Carniti P,Gervasini A,Biella S,et al. Catal. Today,2006,
118: 373—378
[26] Dias A S,Lima S,Carriazo D,et al. J. Catal. ,2006,244:
230—237
[27] Moreau C,Durand R,Duhamet J,et al. J. Carbohydr. Chem. ,
1997,16: 709—714
[28] Rivalier P,Duhamet J,Moreau C,et al. Catal. Today,1995,
24: 165—171
[29] Lansalot-Matras C, Moreau C. Catal. Commun. , 2003, 4:
517—520
[30] Qi X H,Watanabe M,Aida T M,et al. Green Chem. ,2009,
11: 1327—1331
[31] Qi X H,Watanabe M,Aida T M,et al. Green Chem. ,2008,
10: 799—805
[32] Schwegler M A,Vinke P,Vandereijk M,et al. Appl. Catal.
A,1992,80: 41—57
[33] Yan H P,Yang Y,Tong D M,et al. Catal. Commun. ,2009,
10: 1558—1563
[34] Teixeira L C,Linden J C,Schroeder H A. Renewable Energy,
1999,16: 1070—1073
[35] Kaur P P,Arneja J S,Singh J. Bioresour. Technol. ,1998,
66: 267—269
[36] Zhu S D,Wu Y X,Yu Z N,et al. Process Biochem. ,2005,
40: 3082—3086
[37] Bao Q X,Qiao K,Tomida D,et al. Catal. Commun. ,2008,
9: 1383—1388
[38] Yong G,Zhang Y G,Ying J Y. Angew. Chem. Int. Ed. ,
2008,47: 9345—9348
[39] Li C Z,Zhang Z H,Zhao Z B K. Tetrahedron Lett. ,2009,50:
5403—5405
[40] Aida T M,Sato Y,Watanabe M,et al. J. Supercrit. Fluids,
2007,40: 381—388
[41] Qi X H,Watanabe M,Aida T M,et al. Ind. Eng. Chem.
Res. ,2008,47: 9234—9239
[42] Dias A S,Pillinger M,Valente A A. J. Catal. ,2005,229:
414—423
[43] Halliday G A,Young R J,Grushin V V. Org. Lett. ,2003,5:
2003—2005
[44] Musau R M,Munavu R M. Biomass,1987,13: 67—74
[45] Chheda J N,Roman-Leshkov Y,Dumesic J A. Green Chem. ,
2007,9: 342—350
[46] Roman-Leshkov Y,Barrett C J,Liu Z Y,et al. Nature,2007,
447: 982—985
[47] Roman-Leshkov Y, Dumesic J A. Top. Catal. ,2009, 52:
297—303
[48] Yu S,Brown H M,Huang X W,et al. Appl. Catal. A,2009,
361: 117—122

[1] Li Zhou, Abdelkrim Yasmine, Zhiguo Jiang, Zhongzhen Yu, Jin Qu. Microplastics: A Review on Biological Effects, Analysis and Degradation Methods [J]. Progress in Chemistry, 2022, 34(9): 1935-1946.
[2] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[3] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[4] Nan Wang, Yuqi Zhou, Ziye Jiang, Tianyu Lv, Jin Lin, Zhou Song, Lihua Zhu. Synergistically Consecutive Reduction and Oxidation of Per- and Poly-Halogenated Organic Pollutants [J]. Progress in Chemistry, 2022, 34(12): 2667-2685.
[5] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[6] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[7] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[8] Lili Cheng, Yun Zhang, Yekun Zhu, Ying Wu. Selective Oxidation of HMF [J]. Progress in Chemistry, 2021, 33(2): 318-330.
[9] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.
[10] Yiqiang Liu, Yimei Qiu, Xing Tang, Yong Sun, Xianhai Zeng, Lu Lin. Glucose Isomerization into Fructose by Chemocatalytic Route [J]. Progress in Chemistry, 2021, 33(11): 2128-2137.
[11] Yong Feng, Yu Li, Guangguo Ying. Micro-Interface Electron Transfer Oxidation Based on Persulfate Activation [J]. Progress in Chemistry, 2021, 33(11): 2138-2149.
[12] Yu Yin, Chunhui Ma, Wei Li, Shouxin Liu. Solvent System and Conversion Mechanism of 5-Hydroxymethylfurfural Preparation from Glucose [J]. Progress in Chemistry, 2021, 33(10): 1856-1873.
[13] Xuechen Liu, Juanjuan Xing, Haipeng Wang, Yuanyi Zhou, Ling Zhang, Wenzhong Wang. Selective HMF Oxidation into Bio-Based Polyester Monomer FDCA [J]. Progress in Chemistry, 2020, 32(9): 1294-1306.
[14] Ziru Sun, Shengnan Liu, Qingzhi Gao. Development of Anticancer Drugs Targeting Glucose Transporters(GLUTs) [J]. Progress in Chemistry, 2020, 32(12): 1869-1878.
[15] Hanyu Zhang, Meng Liu, Xia Wu, Miao Liu, Decai Xiong, Xinshan Ye. Photo-/Electro-Driven Carbohydrate-Based Reactions [J]. Progress in Chemistry, 2020, 32(11): 1804-1823.