中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (08): 1583-1590 Previous Articles   Next Articles

• Review •

Application of Metathesis in Synthesis of Nucleosides Analogs

Guan Zhu Zhang Yongmin2*   

  1. (1. Peking University Health Science Center, State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China; 2 Institut Parisien de Chimie Moléculaire, UMR CNRS 7201, Université Pierre & Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France)
  • Received: Revised: Online: Published:
  • Contact: Zhang Yongmin E-mail:yongmin.zhang@upmc.fr
PDF ( 1547 ) Cited
Export

EndNote

Ris

BibTeX

Nucleosides analogs may participate and interfere in some way with DNA or RNA replication,transcription or reverse transcription in bacteria or virus, which made them potential antibacterial or antivirus drugs. Some natural nucleosides behave biologically active in vitro, however, instability to enzyme and poor selectivity in vivo restrict their application in medicinal field. Synthesis of chemically modified nucleosides and their derivatives as biologically active molecules has been an important topic in nucleic acid medicinal chemistry. Metathesis reaction, an inter- or intramolecular exchange reaction of alkylidene catalyzed by metal-carbene complex, makes the synthesis of nucleosides analogs go into a new stage, and becomes one of the main routes for the synthesis of nucleosides analogs. Driven by the discovery and improvement of metathesis catalysts, such as Schrock catalysts, Grubbs catalysts etc., olefin-metathesis reactions, especially olefin ring-closing metathesis (RCM) and cross-metathesis (CM) reactions, are widely used in constructing functionalized sugars (or pseudo sugars) in nucleosides analogs structures or connecting two nucleosides to form nucleotide dimers or trimers. Application of olefin metathesis reaction in the synthesis of nucleosides analogs, including carbocyclic nucleosides, 2’, 3’-dideoxynucleosides, acyclonucleosides, polycyclic nucleosides, and nucleosides or nucleotides dimers or trimers, is reviewed in this paper.

Contents: 
1 Introduction 
1. 1 The development of nucleoside chemistry in medicinal chemistry 
1. 2 Metathesis reaction and its catalysts 
2 Application of olefin metathesis in the synthesis of nucleosides analogs 
2. 1 Carbocyclic nucleosides 
2. 2 2’, 3’-Didehydro-2’, 3’-dideoxynucleosides
2. 3 Acyclonucleosides 
2. 4 Polycyclic nucleosides 
2. 5 Nucleoside or nucleotide dimers or trimers 
3 Outlook

[1 ] Amblard F,Nolan S P,Agrofoglio L A. Tetrahedron,2005,61:
7067—7080
[2 ] Schuster M,Blechert S. Angew. Chem. ,Int. Ed. ,1997,36:
2037—2056
[3 ] Schürer S C,Gessler S,Buschmann N,Blechert S. Angew.
Chem. ,Int. Ed. ,2000,39 (21) : 3898—3901
[4 ] Poulsen C S,Madsen R. Synthesis,2003,(1) : 1—18
[5 ] Chattopadhyay S K,Karmakar S,Biswas T,Majumdar K C,
Rahaman H,Roy B. Tetrahedron,2007,63: 3919—3952
[6 ] Ziegler K,Holzkamp E,Breil H,Martin H. Angew. Chem. ,
1955,67(16) : 426—426
[7 ] Calderon N,Chen H Y,Scott K W. Tetrahedron Lett. ,1967,8
(34) : 3327—3329
[8 ] Hérisson J L,Chauvin Y. Macromol. Chem. ,1970,141: 161
[9 ] Schrock R R,Murdzek J S,Bazan G C,Robbins J,DiMare M,
O′Regan M. J. Am. Chem. Soc. ,1990,112 ( 10 ) : 3875—
3886
[10] Fu G C,Grubbs R H. J. Am. Chem. Soc. ,1992,114:
5426—5427
[11] Fu G C,Nguyen S T,Grubbs R H. J. Am. Chem. Soc. ,
1993,115: 9856—9857
[12] Scholl M,Trnka T M,Morgan J P,Grubbs R H. Tetrahedron
Lett. ,1999,40: 2247—2250
[13] Bazan G C,Oskam J H,Cho H N,Park L Y,Schrock R R. J.Am. Chem. Soc. ,1991,113(18) : 6899—6907
[14] (2010-01-28) . [2010-05-04]. http: / / zh. wikipedia. org
[15] Hong S H,Grubbs R H. J. Am. Chem. Soc. ,2006,128
(11) : 3508—3509
[16] Thayer A M. Chemical & Engineering News,2007,85 ( 07 ) :
37—47
[17] Crimmins M T,King B W. J. Org. Chem. ,1996,61: 4192—
4193
[18] Crimmins M T,King B W,Zuercher W J,Choy A L. J. Org.
Chem. ,2000,65: 8499—8509
[19] Zhou J, Yang M, Akdag A, Wang H, Schneller S W.
Tetrahedron,2008,64: 433—438
[20] Choi W J,Park J G,Yoo S J,Kim H O,Moon H R,Chun M
W,Jung Y H,Jeong L S. J. Org. Chem. ,2001,66: 6490—
6494
[21] Jin Y H,Liu P,Wang J,Baker R,Huggins J,Chu C K. J.
Org. Chem. ,2003,68: 9012—9018
[22] Michel B Y,Strazewski P. Tetrahedron,2007,63: 9836—9842
[23] Fang Z,Hong J H. Org. Lett. ,2004,6: 993—995
[24] Ewing D, Glaon V, Mackenzie G, Postel D, Len C.
Tetrahedron Lett. ,2002,43: 3503—3505
[25] Ewing D F, Glaon V, Mackenzie G, Postel D, Len C.
Tatrahedron,2003,59: 941—945
[26] Gillaizeau I,Lagoja I M,Nolan S P,Aucagne V,Rozenski J,
Herdewijn P,Agrofoglio L A. Eur. J. Org. Chem. ,2003,
666—670
[27] Amblard F, Nolan S P, Schinazi R F, Agrofoglio L A.
Tetrahedron,2005,61: 537—544
[28] Kumamoto H,Topalis D,Broggi J,Pradere U,Roy V,Berteina-
Raboin S,Nolan S P,Deville-Bonne D,Andrei G,Snoeck R,
Garin D,Crance J,Agrofoglio L A. Tetrahedron,2008,64:
3517—3526
[29] Knapp S. Chem. Rev. ,1995,95(6) : 1859—1876
[30] Meldgaard M,Wengel J. J. Chem. Soc. Perkin Trans. 1,
2000,21: 3539—3554
[31] Ravn J,Nielsen P. J. Chem. Soc. Perkin Trans. 1,2001,9:
985—993
[32] Ravn J,Thorup N,Nielsen P. J. Chem. Soc. Perkin Trans. 1,
2001,21: 1855—1861
[33] Montembault M, Bourgougnon N, Lebreton J. Tetrahedron
Lett. ,2002,43(45) : 8091—8094
[34] Busca P,Etheve-Quelquejeu M,Valery J M. Tetrahedron Lett. ,
2003,44(51) : 9131—9134
[35] Srensen A M,Nielsen P. Org. Lett. ,2000,2 (26 ) : 4217—
4219
[36] Brsting P, Christensen M S, Steffansen S I, Nielsen P.
Tetrahedron,2006,62: 1139—1149
[37] Batoux N, Benhaddou-Zerrouki R, Bressolier P, Granet R,
Laumont G,Aubertin A,Krausz P. Tetrahedron Lett. ,2001,
42: 1491—1493
[38] Mori M. J. Mol. Catal. A: Chem. ,2004,213: 73—79
[39] Murelli R P, Catalán S, Gannon M P, Snapper M L.
Tetrahedron Lett. ,2008,49: 5714—5717

[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[7] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[8] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[9] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[10] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[13] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[14] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[15] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.