中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (08): 1550-1555 Previous Articles   Next Articles

• Review •

Studies on Nitrogen-doped Nano-carbons and Their Non-Pt Composites as Electrocatalysts

Wen Yuehua**  Cheng Jie   Xu Yan  Liu Xuehu  Cao Gaoping  Yang Yusheng   

  1. ( Research Institute of Chemical Defense, Beijing 100191, China )
  • Received: Revised: Online: Published:
  • Contact: Wen Yuehua E-mail:wen_yuehua@126.com
PDF ( 1706 ) Cited
Export

EndNote

Ris

BibTeX

Electro-catalysts for oxygen reduction with low cost, high activity and high durability have been a focal point of research for fuel cells. Recently, the findings on the significant function of nitrogen-doped to the electrocatalytic performance of nano-carbons and their composites have received widespread great attention. It has pioneered a new space on the research of electrocatalytic materials for fuel cells. On this aspect, some breakthroughs have been obtained. The nitrogen-doped methods, the up-to-date research evolution on the use of non-Pt nitrogen-doped nano-carbons and their composites as electrocatalysts for oxygen reduction were reviewed. Factors that influence the electrocatalytic activities of above catalysts were discussed and theoretic explanations about nitrogen-doped were given. Finally, the prospects of application and development trends in this field were also brought forward.

Contents
1 Introduction 
2 Nitrogen-doped nano-carbon catalysts 
2.1 Nitrogen-doped for nano-carbons 
2.2 Study on performance of catalysts 
3 Nitrogen-doped nano-carbon and non-Pt metal composites 
3.1 Preparation methods 
3.2 Influencing factors 
3.3 Catalyzing mechanism
4 Conclusion

CLC Number: 

[1 ] Cicero W B B,Lei Z,Kunchan L,et al. Electrochimica Acta,
2008,53: 4937—4951
[2 ] Steigerwalt E S,Deluga G A,Cliffel D E. J. Phys. Chem. B,
2001,105: 8097—8101
[3 ] Bessel C A,Laubernds K,Rodriguez N M,et al. J. Phys.
Chem. B,2001,105: 1115—1118
[4 ] Shao Y Y,Yin G P,Wang J J,et al. J. Power Sources,2006,
161: 47—53
[5 ] Dicks A L. J. Power Sources,2006,156: 128—141
[6 ] Wang C,Waje M,Wang X,et al. Nano Lett. ,2004,4: 345—
348
[7 ] Chai G S,Yoon S B,Yu J S,et al. J. Phys. Chem. B,2004,
108: 7074—7079
[8 ] Park K W,Sung Y E,Han S,et al. J. Phys. Chem. B,2004,
108: 939—944
[9 ] Cheng X,Shi Z,Nancy G,et al. J. Power Sources,2007,
165: 739—756
[10] Bashyam R,Zelenay P. Nature,2006,443: 63—66
[11] Wang B. J. Power Sources,2005,152: 1—15
[12] Liu H,Song C,Tang Y,et al. Electrochim. Acta,2007,52:
4532—4538
[13] Bezerra C W B,Zhang L,Liu H. J. Power Sources,2007,
173: 891—908
[14] Matter P H,Wang E,Ozkan U S. J. Catal. ,2006,243: 395—
403
[15] Burch H J,Davies J A,Brown E,et al. Appl. Phys. Lett. ,
2006,89: art no 143110
[16] Terrones M. Ann. Rev. Mater. Res. ,2003,33: 419—501
[17] Fuertes A B,Alvarez S. Carbon,2004,42: 3049—3055
[18] Vijayadurga N,Jong-Won L,Swaminatha P K,et al. Journal of
Power Sources,2008,183: 34—42
[19] Kirsten P,Annalena W,Thorsten S,et al. Composites Science
and Technology,2009,69: 1570—1579
[20] Gong K,Du F,Xia Z,Durstock M,et al. Science,2009,323:
760—764
[21] Ewels C P,Glerup M. J. Nanosci. Nanotechnol. ,2005,5:
1345—1363
[22] Qian D L, Andrews R, Jacques D, et al. J. Nanosci.
Nanotechnol. ,2003,3: 93—97
[23] Kudashov A G,Okotrub A V,Bulusheva L G,et al. J. Phys.
Chem. B,2004,108: 9048—9053
[24] Matter P H,Wang E,Arias M,et al. Journal of Molecular
Catalysis A: Chemical,2007,264: 73—81
[25] Liu J W,Webster S,Carroll D L,et al. J. Phys. Chem. B,
2005,109: 15769—15774
[26] Choi H C,Park J,Kim B J. Phys. Chem. B,2005,109:
4333—4340
[27] Paul H M,Eugenia W,Umit S O. Journal of Catalysis,2006,
243: 395—403
[28] Xia Y D,Mokaya R. Adv. Mater. ,2004,16: 1553—1558
[29] Hou P X,Orikasa H,Yamazaki T,et al. Chem. Mater. ,2005,
17: 5187—5193
[30] Maiyalagan T,Viswanathan B. Mater. Chem. Phys. ,2005,
93: 291—295
[31] Hideharu N,Koji H,Yoshihisa H, et al. Journal of Power
Sources,2009,187: 93—97
[32] Kothandaraman R,Vijayadurga N,Kateryna A,et al. Applied
Catalysis B: Environmental,2009,92: 209—216
[33] Kirsten P,Annalena W,Thorsten S. Composites Science and
Technology,2009,69: 1570—1579
[34] Jiang L Q,Gao L. Carbon,2003,41: 2923—2929
[35] Subramanian N P,Li X G,Nallathambi V,et al. Journal of
Power Sources,2009,188: 38—44
[36] Nallathambi V,Lee J W,Popov B N,et al. Journal of Power
Sources,2008,183: 34—42
[37] Tang Y F,Allen B L,Kauffman D R,et al. J. Am. Chem.
Soc. ,2009,131(37) : 13200—13201
[38] Medard C,Lefevre M,Dodelet J P,et al. Electrochim. Acta,
2006,51: 3202—3213
[39] 李赏( Li S) ,周彦方( Zhou Y F) ,邱鹏( Qiu P) ,潘牧( Pan
M) . 科学通报( Chinese Sci Bull ( Chinese Ver) ) ,2009,54
(7) : 881—887
[40] Zhang W M, Chen J, Wagner P, et al. Electrochemistry
Communications,2008,10: 519—522
[41] Reddy A L M,Rajalakshmi N,Ramaprabhu S. Carbon,2008,
46: 2—11
[42] Wood T E,Tan Z S,Atanasoski R,et al. Journal of Power
Sources,2008,178: 510—516
[43] Ruggeri S,Dodelet J P. J. Electrochem. Soc. ,2007,154:
B761—B769
[44] Lefevre M,Dodelet J P. Electrochim. Acta,2003,48: 2749—
2760

[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[3] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[4] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[5] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[6] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[7] Meng Pengfei, Zhang Xiaorong, Liao Shijun, Deng Yijie. Enhancing the Performance of Atomically Dispersed Carbon-Based Catalysts Through Metallic/Nonmetallic Elements Co-Doping Towards Oxygen Reduction [J]. Progress in Chemistry, 2022, 34(10): 2190-2201.
[8] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[9] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[10] Yu Bai, Shuanjin Wang, Min Xiao, Yuezhong Meng, Chengxin Wang. Phosphoric Acid Based Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2021, 33(3): 426-441.
[11] Siyan Yu, Long Zheng, Pengfei Meng, Xiudong Shi, Shijun Liao. M-N/C Electrocatalysts Derived from MOFs for Oxygen Reduction Reaction [J]. Progress in Chemistry, 2021, 33(10): 1693-1705.
[12] Rui Zhang, Yun Wu, Lutian Wang, Qiang Wu, Hongwei Zhang. Cathode Denitrification of Microbial Fuel Cells [J]. Progress in Chemistry, 2020, 32(12): 2013-2021.
[13] Honghong Wang, Wen Lei, Xiaojian Li, Zhong Huang, Quanli Jia, Haijun Zhang. Catalytic Reductive Degradation of Cr(Ⅵ) [J]. Progress in Chemistry, 2020, 32(12): 1990-2003.
[14] Dongmei Yao, Weiqi Zhang, Qian Xu, Li Xu, Huaming Li, Huaneng Su. Membrane Electrode Assembly for High Temperature Polymer Electrolyte Membrane Fuel Cell Based on Phosphoric Acid-Doped Polybenzimidazole [J]. Progress in Chemistry, 2019, 31(2/3): 455-463.
[15] Yuekun Ye, Bin Chi, Shijie Jiang, Shijun Liao. Enhancing the Durability of Membrane Electrode Assembly of Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2019, 31(12): 1637-1652.