中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (07): 1286-1294 Previous Articles   Next Articles

• Invited Article •

Catalytic Organic Reactions in CO2/H2O Medium

Wu Suxiang    Fan Honglei    Cheng Yan    Wang Qian    Han Buxing**   

  1. ( Institute of Chemistry Chinese Academy of Science, Beijing 100190, China )
  • Received: Online: Published:
  • Contact: Han Buxing E-mail:hanbx@iccas.ac.cn
PDF ( 1682 ) Cited
Export

EndNote

Ris

BibTeX

Green chemistry is the trend of chemistry in the future. Utilization of green solvents effectively is one of the important topic in green chemistry. CO2/H2O is green reaction medium of some unique features, and can be used in different chemical reactions. Especially, it can be used in the reactions catalyzed by weak acids, in which use of conventional acids can be avoided. In this review, we first discuss the variation of the acidity CO2/H2O system with temperature and pressure, then some chemical reactions in CO2/H2O system are discussed, including dehydration reaction, alkylation reaction, citronellal cyclization reaction,diazonium reaction, conversion of polyalcohol to cyclic ether, oxybromination reaction, selective reduction of nitroarenes, polysaccharide hydrolysis, conversion of biomass, hydrolysis of propylene oxide, decarboxylation reaction, oxidation of alcohols, enantioselective sulfoxidation, asymmetric reduction of ketones. Finallly, the future directions for the application of CO2/H2O system in chemical reaction are discussed briefly.

Contents 
1 Introduction 
2 Acidity changes in CO2/H2
3 Chemical reactions in CO2/H2
3.1 Dehydration reaction and alkylation reaction 
3.2 Citronellal cyclization reaction 
3.3 Diazonium reaction 
3.4 Coversation of polyalcohol to cyclic ether 
3.5 Oybromination reaction 
3.6 Selective reduction of nitroarenes 
3.7 Polysaccharide hydrolysis 
3.8 Conversation of biomass and hydrolysis of propylene oxide 
3.9 Decarboxylation reaction
3.10 Oxidation of alcohols 
3.11 Enantioselective sulfoxidation 
3.12 Asymmetric reduction of ketones 
4 Conclusions and outlook

CLC Number: 

[1 ] Poliakoff M, Fitzpatrick J M, Farren T R, Anastas P T.
Science,2002,297: 807—810
[2 ] Toda M,Takagaki A,Okamura M,Kondo J N,Hayashi S,
Domen K,Hara M. Nature,2005,438: 178—178
[3 ] Tundo P, Perosa A, Zecchini F. Methods and Reagents for
Green Chemistry: An Introduction. Hoboken,New Jersey: John
Wiley & Sons,Inc. ,2007
[4 ] Licence P,Gray W K,Sokolova M,Poliakoff M. J. Am. Chem.
Soc. ,2005,127: 293—298
[5 ] Liu H Z,Jiang T,Han B X,Liang S G,Zhou Y X. Science,
2009,326: 1250—1252
[6 ] Sabine K,Axel B,Walter L,Andreas P. J. Am. Chem. Soc. ,
1999,121: 6421—6429
[7 ] Wu T B,Jiang T,Hu B J,Han B X,He J L,Zhou X S. Green
Chem. ,2009,11: 798—803
[8 ] He L N,Hiroyuki Y,Toshiyasu S. Green Chem. ,2003,5:
92—94
[9 ] Liu R X,Zhao F Y, Fujita S, Arai M. Appl. Catal. , A:
General,2007,316: 127—133
[10] He J L,Wu T B,Jiang T,Zhou X S,Hu B J,Han B X. Catal.
Commun. ,2008,9: 2239—2243
[11] Sawada T,Nakayama S,Kawai-Nakamura A,Sue K,Iwamura
H,Hiaki T. Green Chem. ,2009,11: 1675—1680
[12] Broll D,Kaul C,Kramer A,Krammer P,Richter T,Jung M,
Vogel H, Zehner P. Angew. Chem. Int. Ed. ,1999,38:
2998—3014
[13] Geletii Y V, Besson C,Hou Y, Yin Q S,Musaev D G,
Quionero D,Cao R,Hardcastle K I,Proust A,Kgerler P,Hill
C L. J. Am. Chem. Soc. ,2009,131 (47) : 17360—17370
[14] Cheng Y,Fan H L,Wu S X,Wang Q,Guo J,Gao L,Zong B
N,Han B X. Green Chem. ,2009,11: 1061 — 1065
[15] Oka H,Yamago S,Yoshida J,Kajimoto O. Angew. Chem. Int.
Ed. ,2002,41: 623—625
[16] Zheng Z L,Perkins B L,Ni B. J. Am. Chem. Soc. ,2010,
132 (1) : 50—51
[17] Ho C M,Zhang J L,Zhou C Y,Chan O Y,Yan J J,Zhang F
Y,Huang J S,Che C M. J. Am. Chem. Soc. ,2010,132
(6) : 1886—1894
[18] Eghbali N,Li C J. Green Chem. ,2007,9: 213—215
[19] Li C J. Angew. Chem. Int. Ed. ,2003,42: 4856 —4858
[20] Sun J,Ren J Y,Zhang S J,Cheng W G. Tetrahedron Lett. ,
2009,50: 423—426
[21] Sebastian W,Schtz A,Grass R N, Stark W J,Reiser O.
Angew. Chem. Int. Ed. ,2010,49: 1867 —1870
[22] Olivier B,Li C J. Green Chem. ,2007,9: 1047—1050
[23] Liu Y L,Liu L,Wang Y L,Han Y C,Wang D,Chen Y J.
Green Chem. ,2008,10: 635—640
[24] 周玉青( Zhou Y Q) ,查正银( Cha Z Y) ,徐晓岚( Xu X L) ,
汪志勇( Wang Z Y) . 中国科学技术大学学报( Journal of
University of Science and Technology of China) ,2008,38(6 ) :
647—655
[25] Herrerías C I,Yao X Q,Li Z P,Li C J. Chem. Rev. ,2007,
107: 2546—2562
[26] Katritzky A R,Allin S M,Siskin M. Acc. Chem. Res. ,1996,
29: 399—406
[27] Akiya N,Savage P E. Chem. Rev. ,2002,102: 2725—2750
[28] Savage P E. Chem. Rev. ,1999,99: 603—622
[29] Jessop P G,Leitner W. Chemical Synthesis Using Supercritical
Fluids. Weinheim: Wiley-VCH,1999
[30] 韩布兴(Han B X) . 超临界流体科学与技术( Supercritical
Fluid Science & Technology ) . 北京: 中国石化出版社
( Beijing: China Petrochemical Press)
[31] Roosen C,Ansorge-Schumacher M,Mang T,Leitner W,Greiner
L. Green Chem. ,2007,9: 455—458
[32] Toews K L,Shroll R M,Wai C M,Smart N G. Anal. Chem. ,
1995,67: 4040—4043
[33] Weikel R R,Hallett J P,Liotta C L,Eckert C A,Top. Catal. ,
2006,37: 75—80
[34] Hunter S E,Savage P E. Ind. Eng. Chem. Res. ,2003,42:
290—294
[35] Hunter S E,Savage P E. AIChE Journal,2008,54: 516—528
[36] Hunter S E,Ehrenberger C E,Savage P E. J. Org. Chem. ,
2006,71: 6229—6239
[37] Cheng H Y,Meng X C,Liu R X,Hao Y F,Yu Y C,Cai S X,
Zhao F Y. Green Chem. ,2009,11: 1227—1231
[38] Liu S J,Wang Y H,Jiang J Y,Jin Z L. Green Chem. ,2009,
11: 1397—1400
[39] Li G P,Jiang H F,Li J H. Green Chem. ,2001,3: 250—251
[40] Jiang H F,Huang X Z. J. Supercrit. Fluids,2007,43: 291—
294
[41] Miyazawa T, Funazukuri T. Biotechnol. Prog. , 2005, 21:
1782—1785
[42] Tundo P,Loris A,Selva M. Green Chem. ,2007,9: 777—779[43] Aleman P A,Boix C,Poliakoff M. Green Chem. ,1999,1:
65—68
[44] Rayner C M. Org. Process Res. Dev. ,2007,11: 121—132
[45] Yamaguchi A,Hiyoshi N,Sato O,Rode C V,Shirai M. Chem.
Lett. ,2008,37: 926—927
[46] Yamaguchi A,Hiyoshi N,Sato O,Bando K K,Shirai M. Green
Chem. ,2009,11: 48—52
[47] Ganchegui B,Leitner W. Green Chem. ,2007,9: 26—29
[48] Gao G,Tao Y,Jiang J Y. Green Chem. ,2008,10: 439—441
[49] Hunter S E,Savage S E. Chem. Eng. Sci. ,2004,59: 4903—
4909
[50] Burgemeister K F, Hugl H, Leitner W. Chem. Commun. ,
2005,6026—6028
[51] Jacobson G B,Lee C T,Johnston K P,Tumas W. J. Am.
Chem. Soc. ,1999,121: 11902—11903
[52] Li J H,Xie Y X,Yin D L. J. Org. Chem. ,2003,68: 9867—
9869
[53] Timko M T,Smith K A,Danheiser R L,Steinfeld J I. AIChE
J. ,2006,52: 1127—1141
[54] Leitner W. Pure Appl. Chem. ,2004,76: 635—644
[55] Ohde M,Ohde H,Wai C M. Langmuir,2005,21: 1738—1744
[56] Eckert C A,Liotta C L,Bush D,Brown J S,Hallett J P. J.
Phys. Chem. B,2004,108: 18108—18118
[57] Murray B S,Dickinson E,Clarke D A,Rayner C M. Chem.
Commun. ,2006,1410—1412
[58] Harada T,Kubota Y,Kamitanaka T,Nakamura K,Matsuda T.
Tetrahedron Lett. ,2009,50: 4934—4936
[59] Karmee S K,Roosen C,Kohlmann C, Lütz S,Greiner L,
Leitner W. Green Chem. ,2009,11: 1052—1055
[60] Liu R X,Wu C Y,Wang Q,Ming J,Hao Y F,Yu Y C,Zhao
F Y. Green Chem. ,2009,11: 979—985
[61] Wu S X,Fan H L,Xie Y,Cheng Y,Wang Q,Zhang Z F,Han
B X. Green Chem. ,2010,DOI: 10. 1039 /C002553D
[62] Miao C X,He L N,Wang J Q,Wang J L. Adv. Synth. Catal. ,
2009,351: 2209—2216
[63] Miao C X,He L N,Wang J L,Wu F. J. Org. Chem. ,2010,
75: 257—260
[64] Xu X D,Antal M J,Anderson D G M. Industrial & Engineering
Chemistry Research,1997,36: 3—41

[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[4] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[5] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[6] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[7] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[8] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[9] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[10] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[11] Yajuan Wu, Jingwen Luo, Yongji Huang. Catalytic Synthesis of N,N-Dimethylformamide from Carbon Dioxide and Dimethylamine [J]. Progress in Chemistry, 2022, 34(6): 1431-1439.
[12] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[13] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[14] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[15] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.