中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (05): 993-1001 Previous Articles   Next Articles

Special Issue: 计算化学

• Invited Article •

Computational Chemistry of Protein Kinase A and Its Inhibitor Balanol

Jin Haixiao; Yan Xiaojun**; Zhu Peng   

  1. (Key Laboratory of Marine Biotechnology, Ningbo University, Ningbo 315211, China)
  • Received: Revised: Online: Published:
  • Contact: Yan Xiaojun E-mail:yanxiaojun@nbu.edu.cn
PDF ( 1712 ) Cited
Export

EndNote

Ris

BibTeX

Protein kinases regulate signal transduction pathways in cell by phosphorylating the protein kinase substrate, and they are important targets in drug design. Protein kinase A (PKA) is the first kinase that was obtained X-ray structure of its catalytic domain, and is regarded as prototype for protein kinase superfamily. The progress in computational chemistry study of protein kinase A has been reviewed, including the molecular dynamics simulation study of PKA holoenzyme and its C subunit and R subunit in aqueous solution, phosphoryl transfer mechanism, the binding free energy predicting and flexible docking of C subunit with its inhibitor balanol. Various computational approaches are applied to this system, including molecular dynamics simulation, dock, homology modeling, QM/MM.

Contents
1 Introduction
2 Molecular dynamics simulation study on PKA
2.1 Molecular dynamics simulation study on C subunit
2.2 Modeling of the complex of C subunit and R subunit
2.3 Molecular dynamics simulation study on R subunit
3 Phosphoryl transfer mechanism
4 Balanol
4.1 Prediction of binding free energy
4.2 Flexible protein-flexible ligand docking
4.3 Mechanism of high selectivity of balanol analogue BD2
4.4 Functional role of structure water molecules in the recognition of C subunit and BD2
5 Conclusion and outlook

CLC Number: 

[1 ] Johnson L N,Lewis R J. Chem. Rev. ,2001,101: 2209—
2242
[2 ] Naviglio S,Caraglia M,Abbruzzese A,et al. Expert. Opin.
Ther. Targets,2009,13: 83—92
[3 ] Murray A J. Sci. Signal. ,2008,1(22) : art. no. re4
[4 ] Taylor S S,Kim C,Cheng C Y,et al. Biochim. Biophys. Acta,
2008,1784: 16—26
[5 ] Chiaradonna F,Balestrieri C,Gaglio D,et al. Front. Biosci. ,
2008,13: 5257—5278
[6 ] Yonemoto W,McGlone M L,Grant B,et al. Protein Eng. ,
1997,10: 915—925
[7 ] Knighton D,Zheng J,Ten Eyck L,et al. Science,1991,253:
407—414
[8 ] Su Y,Dostmann W R,Herberg F W,et al. Science,1995,
269: 807—813
[9 ] Kim C,Cheng C Y,Saldanha S A,et al. Cell,2007,130:
1032—1043
[10] Herberg F W,Taylor S S,Dostmann W R. Biochemistry,1996,
35: 2934—2942
[11] Tsigelny I,Greenberg J P,Cox S,et al. Biopolymers,1999,
50: 513—524
[12] Cheng Y H,Zhang Y K,McCammon J A. Protein Sci. ,2006,
15: 672—683
[13] Jin H X, Wu T X, Jiang Y J, et al. J. Mol. Struct.
( Theochem. ) ,2007,805: 9—15
[14] Cheng X,Ma Y,Moore M,et al. Proc. Natl. Acad. Sci. ,
1998,95: 9849—9854
[15] Anand G S,Law D,Mandell J G,et al. Proc. Natl. Acad. Sci.
USA,2003,100: 13264—13269
[16] Tung C S,Walsh D A,Trewhella J. J. Biol. Chem. ,2002,
277: 12423—12431
[17] Kim C,Vigil D,Anand G,et al. Eur. J. Cell Biol. ,2006,
85: 651—654
[18] Taylor S S,Yang J,Wu J,et al. Biochim. Biophys. Acta,
2004,1697: 259—269
[19] Iyer G H,Garrod S,Woods J V L,et al. J. Mol. Biol. ,2005,
351: 1110—1122
[20] Kim C,Xuong N H,Taylor S S. Science,2005,307: 690—
696
[21] Kumar S,Ma B,Tsai C J,et al. Protein Sci. ,2000,9: 10—
19
[22] Gullingsrud J,Kim C,Taylor S S,et al. Structure,2006,14:
141—149
[23] Madhusudan,Akamine P,Xuong N H, et al. Nat. Struct.
Biol. ,2002,9: 273—277
[24] Zheng J,Trafny E A,Knighton D R,et al. Acta Crystallogr. D
Biol. Crystallogr. ,1993,49: 362—365
[25] Gibbs C S,Zoller M J. J. Biol. Chem. ,1991,266: 8923—
8931
[26] Zhou J,Adams J A. Biochemistry,1997,36: 2977—2984
[27] Madhusudan,Trafny E A,Xuong N H,et al. Protein Sci. ,
1994,3: 176—187
[28] Hemmer W,McGlone M,Tsigelny I,et al. J. Biol. Chem. ,
1997,272: 16946—16954
[29] Aimes R T,Hemmer W,Taylor S S. Biochemistry,2000,39:
8325—8332
[30] Hart J C,Sheppard D W,Hillier I H,et al. Chem. Commun. ,
1999,79—80
[31] Hart J C,Hillier I H,Burton N A,et al. J. Am. Chem. Soc. ,
1998,120: 13535—13536
[32] Hutter M C,Helms V. Protein Sci. ,1999,8: 2728—2733
[33] Hirano Y,Hato M,Hoshino T,et al. J. Phys. Chem. B,
2002,106: 5788—5792
[34] Cavalli A,De Vivo M,Recanatini M. Chem. Commun. ,2003,
1308—1309
[35] Valiev M,Kawai R,Adams J A,et al. J. Am. Chem. Soc. ,
2003,125: 9926—9927
[36] Diaz N,Field M J. J. Am. Chem. Soc. ,2004,126: 529—542
[37] Henkelman G,LaBute M X,Tung C S,et al. Proc. Natl.
Acad. Sci. USA,2005,102: 15347—15351
[38] Cheng Y,Zhang Y,McCammon J A. J. Am. Chem. Soc. ,
2005,127: 1553—1562
[39] Valiev M,Yang J,Adams J A,et al. J. Phys. Chem. B,
2007,111: 13455—13464
[40] Szarek P,Dyguda-Kazimierowicz E, Tachibana A, et al. J.
Phys. Chem. B,2008,112: 11819—11826
[41] Kulanthaivel P,Hallock Y F,Boros C,et al. J. Am. Chem.
Soc. ,1993,115: 6452—6453
[42] Narayana N,Diller T C,Koide K,et al. Biochemistry,1999,
38: 2367—2376
[43] Setyawan J,Koide K,Diller T C,et al. Mol. Pharmacol. ,
1999,56: 370—376
[44] Hünenberger P H,Helms V,Narayana N,et al. Biochemistry,
1999,38: 2358—2366
[45] Wong C F,Hünenberger P H,Akamine P,et al. J. Med.
Chem. ,2001,44: 1530—1539
[46] Wang M,Wong C F. J. Chem. Phys. ,2007,126: art. no.
026101
[47] Wong C F,Kua J,Zhang Y,et al. Proteins,2005,61: 850—
858
[48] Kovacs J A,Cavasotto C N,Abagyan R J. et al. J. Comput.
Theor. Nanosci. ,2005,2: 354—361
[49] Cavasotto C N,Kovacs J A,Abagyan R A. J. Am. Chem.
Soc. ,2005,127: 9632—9640
[50] Zhao Y,Sanner M F. Proteins,2007,68: 726—737
[51] Huang Z,Wong C F,Wheeler R A. Proteins,2008,71: 440—
454
[52] Akamine P,Madhusudan,Brunton L L,et al. Biochemistry,
2004,43: 85—96
[53] 金海晓( Jin H X) ,吴天星(Wu T X) ,严小军( Yan X J) 等.
化学学报(Acta Chimica Sinica) ,2009,67: 1461—1468
[54] Jin H X, Wu T X, Jiang Y J, et al. J. Mol. Struct.
( Theochem. ) ,2007,809: 21—27

[1] Weijia Zhang, Xueguang Shao, Wensheng Cai. Molecular Simulation of the Antifreeze Mechanism of Antifreeze Proteins [J]. Progress in Chemistry, 2021, 33(10): 1797-1811.
[2] Haochuan Chen, Haohao Fu, Xueguang Shao, Wensheng Cai. Importance Sampling Methods and Free Energy Calculations [J]. Progress in Chemistry, 2018, 30(7): 921-931.
[3] Lei Dongsheng, Tong Huimin, Zhang Lei, Zhang Xing, Zhang Shengli, Ren Gang. Structure and Function of Cholesteryl Ester Transfer Protein in Transferring Cholesteryl Ester [J]. Progress in Chemistry, 2014, 26(05): 879-888.
[4] Zhao Lijun, Lei Ming. Computational Chemical Studies on Transthyretin [J]. Progress in Chemistry, 2014, 26(01): 193-202.
[5] Ann M. Bode, Zigang Dong. Strategies for Identifying Molecular Targets for Cancer Chemoprevention [J]. Progress in Chemistry, 2013, 25(09): 1501-1516.
[6] Chang Shanyan, Liu Fufeng*. Molecular Simulations of ATP-Binding Cassette Transporters [J]. Progress in Chemistry, 2013, 25(07): 1208-1218.
[7] Chen Jingfei, Hao Jingcheng. Coarse-Grained Molecular Dynamics Simulation of Surfactants in Aqueous Solution [J]. Progress in Chemistry, 2012, (10): 1890-1896.
[8] Wu Ruibo, Cao Zexing, Zhang Yingkai. Computational Simulations of Zinc Enzyme: Challenges and Recent Advances [J]. Progress in Chemistry, 2012, 24(06): 1175-1184.
[9] . Theoretical Calculation of Cyclodextrins [J]. Progress in Chemistry, 2010, 22(05): 803-811.
[10] . Molecular Dynamics Simulation for Room Temperature Ionic Liquids [J]. Progress in Chemistry, 2009, 21(0708): 1427-1433.
[11] Deng Pingye 1,2,Zhang Donghai 1, Tian Yajun 1, Chen Yunfa 1*, Ding Hui 3. Molecular Dynamics Simulations of Self-Assembling [J]. Progress in Chemistry, 2007, 19(9): 1249-1257.
[12]

Ye Deju1, Luo Xiaomin1, Shen Jianhua1, Zhu Weiliang1, Shen Xu1,2 , Jiang Hualiang1,2, Liu Hong1**

. Discovering Potential Drug Leads via Docking, Synthesis and Bioassay [J]. Progress in Chemistry, 2007, 19(012): 1939-1946.
[13] Cai Wensheng,Lin Yi,Shao Xueguang**. Interatomic Potential Function in Cluster Research [J]. Progress in Chemistry, 2005, 17(04): 588-596.