中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (04): 677-683 Previous Articles   Next Articles

• Invited Article •

Progress of Cyclotides in Plants

Tang Jun1,2; Tan Ninghua1**   

  1. (1. State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; 2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China)
  • Received: Revised: Online: Published:
  • Contact: Tan Ninghua E-mail:nhtan@mail.kib.ac.cn
  • Supported by:

    ;National Natural Science Foundation of China;National Natural Science Foundation of China

PDF ( 1403 ) Cited
Export

EndNote

Ris

BibTeX

Cyclotides are a family of plant-derived macrocyclic peptides, which are formed by 28-37 amino acid residues and contain three disulfide bonds and the unique protein structural motif termed cyclic cystine knot. For their unique structures and various bioactivities, such as uterotonic, hemolytic, cytotoxic and anti-bacterial activities, and stability to resist thermal, acidic and proteolytic degradation, cyclotides can be used as a peptide-based combinational template and carrier for drug design, and attract more attentions from scientists. Now over 100 cyclotides have been isolated from about 30 species of Violaceae, Rubiaceae and Cucurbitaceae. Most contributions on cyclotides have been achieved by the groups in Australia, Sweden and USA. Our lab is also investigating on cyclotides. This paper introduces cyclotides’ research history, methods for extraction, isolation and detection, structural determination and classification, homological analysis of sequences, synthesis and biosynthesis, bioactivity and so on.

Contents
1 Introduction
2 Methods of extraction, isolation, detection and structural determination of cyclotides
3 Structure and property of cyclotides
4 Homology and classification of cyclotides
5 Synthesis and biosynthesis of cyclotides
6 Bioactivities of cyclotides
6.1 Uterotonic activity
6.2 Hemolytic activity
6.3 Anti-HIV activity
6.4 Antimicrobial activity
6.5 Cytotoxic activity
6.6 Neurotensin antagonistic activity
6.7 Trypsin inhibitory activity
6.8 Insecticidal and molluscicidal activity
7 Application of cyclotides

CLC Number: 

[1 ] Tan N H,Zhou J. Chem. Rev. ,2006,106: 840—895
[2 ] Saether O,Craik D J,Campbell I D,et al. Biochemistry,1995,34: 4147—4158
[3 ] Gran L. Medd. Nor. Farm. Selsk. ,1970,12: 173—180
[4 ] Wang K C,Kaas Q,Chiche L,et al. Nucleic Acids Res. ,2008,36: D206—D210
[5 ] Claeson P,Goransson U,Johansson S,et al. J. Nat. Prod. ,1998,61: 77—81
[6 ] Zhou J,Tan N H. Chin. Sci. Bull. ,2000,45: 1825—1832
[7 ] Xu W Y,Tang J,Ji C J,et al. Chin. Sci. Bull. ,2008,53:1671—1674
[8 ] 唐军( Tang J) . 中国科学院昆明植物研究所博士学位论文(Doctoral Dissertation of Kunming Institute of Botany,Chinese Academy of Sciences) ,2009
[9 ] Gustafson K R,Sowder R C,Henderson L E,et al. J. Am.Chem. Soc. ,1994,116: 9337—9338
[10] Witherup K M,Bogusky M J,Anderson P S,et al. J. Nat.Prod. ,1994,57: 1619—1625
[11] Craik D J,Daly N L. Mol. Biosyst. ,2007,3: 257—265
[12] Rosengren K J,Daly N L,Plan M R,et al. J. Biol. Chem. ,2003,278: 8606—8616
[13] Jennings C V,Rosengren K J,Daly N L,et al. Biochemistry,2005,44: 851—860
[14] Daly N L,Clark R J,Plan M R,et al. Biochem. J. ,2006,393: 619—626
[15] Daly N L,Koltay A,Gustafson K R,et al. J. Mol. Biol. ,1999,285: 333—345
[16] Trabi M,Craik D J. Plant Cell,2004,16: 2204—2216
[17] Craik D J,Daly N L,Bond T,et al. J. Mol. Biol. ,1999,294: 1327—1336
[18] Felizmenio-Quimio M E,Daly N L,Craik D J. J. Biol. Chem. ,2001,276: 22875—22882
[19] Heitz A,Hernandez J F,Gagnon J H, et al. Biochemistry,2001,40: 7973—7983
[20] Barry D G,Daly N L,Bokesch H R,et al. Structure,2004,12: 85—94
[21] Koltay A,Daly N L,Gustafson K R,et al. Int. J. Pept. Res.Ther. ,2005,11: 99—106
[22] Mulvenna J R,Sando L,Craik D J. Structure,2005,13: 691—701
[23] Chen B,Colgrave M L,Daly N L,et al. J. Biol. Chem. ,2005,280: 22395—22405
[24] Wang K C,Hu S H,Martin J L,et al. J. Biol. Chem. ,2009,284: 10672—10683
[25] Gran L. Lloydia,1973,36: 174—178
[26] Colgrave M L,Craik D J. Biochemistry,2004,43: 5965—5975
[27] Hernandez J F,Gagnon J, Chiche L, et al. Biochemistry,2000,39: 5722—5730
[28] Craik D J,Daly N L,Mulvenna J,et al. Curr. Protein Pept.Sci. ,2004,5: 297—315
[29] Tam J P,Lu Y A. Tetrahedron Lett. ,1997,38: 5599—5602
[30] Tam J P,Lu Y A,Yu Q. J. Am. Chem. Soc. ,1999,121:4316—4324
[31] Daly N L,Craik D J. J. Biol. Chem. ,2000,275: 19068—19075
[32] Jennings C,West J,Waine C,et al. Proc. Nat. Acad. Sci. ,2001,98: 10614—10619
[33] Saska I,Gillon A D,Hatsugai N, et al. J. Biol. Chem. ,2007,282: 29721—29728
[34] Plan M R. Doctoral Dissertation of the University of Queensland,2006
[35] Gran L. Lloydia,1973,36: 174—178
[36] Schoepke T,Hasan A M I,Kraft R,et al. Sci. Pharm. ,1993,61: 145—153
[37] Bokesch H R, Pannell L K, Cochran P K, et al. J. Nat.Prod. ,2001,64: 249—250
[38] Tam J P,Lu Y A,Yang J L,et al. Proc. Nat. Acad. Sci. ,1999,96: 8913—8918
[39] Lindholm P,Goransson U,Johansson S,et al. Mol. Cancer Ther. ,2002,1: 365—369
[40] Daly N L,Love S,Alewood P F,et al. Biochemistry,1999,38: 10606—10614
[41] Hallock Y F,Sowder R C,Pannell L K,et al. J. Org. Chem. ,2000,65: 124—128
[42] Ireland C D,Wang K C,Wilson A J,et al. Peptide Science,2008,90: 51—60
[43] Svangrd E,Goransson U,Hocaoglu Z,et al. J. Nat. Prod. ,2004,67: 144—147
[44] Herrmann A,Svangrd E,Claeson P,et al. Cell. Mol. Life Sci. ,2006,63: 235—245
[45] Svangrd E,Burman R,Gunasekera S,et al. J. Nat. Prod. ,2007,70: 643—647
[46] Herrmann A,Burman R,Mylne J S, et al. Phytochemistry,2008,69: 939—952
[47] Colgrave M,Kotze A,Huang Y H,et al. Biochemistry,2008,47: 5581—5589
[48] Colgrave M,Kotze A,Kopp S,et al. Acta Trop. ,2009,109:163—166
[49] Plan M R,Saska I, Cagauan A G, et al. J. Agric. Food Chem. ,2008,56: 5237—5241
[50] Craik D J,Cemazar M,Daly N L. Curr. Opin. Drug Discov.Devel. ,2006,9: 251—260
[51] Simonsen S M,Sando L, Rosengren K J, et al. J. Biol.Chem. ,2008,283: 9805—9813
[52] Gunasekera S,Foley F, Clark R, et al. J. Med. Chem. ,2008,51: 7697—7704

[1] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[2] Wenbo Zhang, Fangqin Li, Jiang Wu*, Hexing Li*. Mercury Removal Technologies of the Flue Gas from Power Plants [J]. Progress in Chemistry, 2017, 29(12): 1435-1445.
[3] Lv Jitao, Zhang Shuzhen*. Interactions Between Manufactured Nanomaterials and Plants: Phytotoxicity, Uptake and Translocation [J]. Progress in Chemistry, 2013, 25(01): 156-163.
[4] Wang Jiali, Tang Jian, Zhang Peng, Wang Jue, Li Yangde, Qin Ling. Indication of Electrochemical Measurements of Magnesium Alloys in vitro for Their Degradation Behavior in vivo [J]. Progress in Chemistry, 2012, 24(04): 598-605.
Viewed
Full text


Abstract

Progress of Cyclotides in Plants