中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (04): 654-662 Previous Articles   Next Articles

• Invited Article •

Dilute Acid Hydrolysis Reaction of Biomass Hemicellulose

Jin Qiang1,2; Zhang Hongman3; Yan Lishi1,2; Huang He1,2**   

  1. (1.College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China;2.State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China;3.College of Science, Nanjing University of Technology, Nanjing 210009, China)
  • Received: Revised: Online: Published:
  • Contact: Huang He E-mail:biotech@njut.edu.cn
  • Supported by:

    National Natural Science Foundation of China

PDF ( 4449 ) Cited
Export

EndNote

Ris

BibTeX

Hemicellulose is the second largest component of lignocellulosic biomass. The conversion of hemicellulose with high efficiency and low costs is a key technology to industrial lignocellulosic biomass conversion process. Dilute acid hydrolysis technology is widely used in biomass hemicellulose hydrolysis. It has the advantages of high efficiency for hemicellulosic sugar conversion, and the obtained sugar can be used to produce fuel ethanol further. Hemicellulose can be also hydrolyzed directly to produce functional food such as oligosaccharides and chemical products such as furfural. In this paper, the progress of hemicellulose hydrolysis reaction with dilute acid is reviewed. The basic structure characterization of hemicellulose is introduced. The mechanism of the dilute acid catalytic hydrolysis reaction and reaction networks are discussed. The influences of different catalysts and reaction conditions on the target products are remarked. The hemicellulose hydrolysis kinetic models are summarized. The paper also indicates the future research trend of hemicellulose dilute acid hydrolysis reaction and utilization for its hydrolysates.

Contents
1 Introduction
2 Structure and characterization of hemicellulose
3 Dilute acid hydrolysis mechanism and reaction network of hemicellulose
4 Factors influencing hemicellulose hydrolysis reaction with dilute acid
5 Dilute acid hydrolysis kinetic models of hemicellulose
6 Conclusion and prospects

CLC Number: 

[1 ] Zaldivar J,Nielsen J,Olssson L. Appl. Microbiol. Biotechnol. ,2001,56:17—34
[2 ] Lynd L R,Laser M S,Bransby D,et al. Nat. Biotechnol. ,2008,26: 169—172
[3 ] Wyman C E. Biotechnol. Progr. ,2003,19: 254—262
[4 ] Juslin M,Paronen P. J. Pharm. Pharmacol. ,1984,36: 256—257
[5 ] Mamman A S,Lee J M,Kim Y C,et al. Biofpr. ,2008,2:438—454
[6 ] Yang B,Wyman C E. Prog. Chem. ,2007,19: 1072—1075
[7 ] Sun Y,Cheng J. Bioresour. Technol. ,2002,83: 1—11
[8 ] 何北海(He B H) ,林鹿( Lin L) ,孙润仓( Sun R C) 等. 化学进展( Progress in Chemistry) ,2007,19(7 /8) : 1141—1146
[9 ] Yang B,Wyman C E. Biofpr. ,2008,2: 26—40
[10] Mosier N,Wyman C,Dale B, et al. Bioresour. Technol. ,2005,96: 673—686
[11] Schell D J, Farmer J,Newman M, et al. Appl. Biochem.Biotechnol. ,2003,105 /108: 69—85
[12] Aden A,Ruth M,Ibsen K,et al. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover. NREL /TP-510-32438, 2002. National Renewable Energy Laboratory. Golden,CO
[13] Sun J X,Sun X F,Sun R C,at al. Carbohydr. Polym. ,2004,56: 195—204
[14] Gray K A,Zhao L,Emptage M. Curr. Opin. Chem. Biol. ,2006,10: 141—146
[15] Saha B C. J. Ind. Microbiol. Biotechnol. ,2003,30: 279—291
[16] Chen H Z,Liu L Y. Bioresour. Technol. ,2007,98: 666—676
[17] Chaikumpollert O, Methacanon P, Suchiva K. Carbohydr.Polym. ,2004,57: 191—196
[18] Sluiter A,Hames B,Ruiz R,et al. Determination of Sugars,Byproducts,and Degradation Products in Liquid Fraction Process Samples. NREL /TP-510-42623, 2006. National Renewable Energy Laboratory. Golden,CO
[19] Viamajala S,McMillan J D, Schell D J, et al. Bioresour.Technol. ,2009,100: 925—934
[20] Lee Y Y, Iyer P, Torget R W. Adv. Biochem. Eng. /Biotechnol. ,1999,65: 93—115
[21] Canettieri E V,Rocha G J,Carvalho J A,et al. Bioresour.Technol. ,2007,98: 422—428
[22] Lu X B,Zhang Y M,Liang Y,et al. Chem. Biochem. Eng.Q. ,2008,22: 137—142
[23] Liu C,Wyman C E. Ind. Eng. Chem. Res. ,2003,42:5409—5416
[24] Lee Y Y,Wu Z,Torget R W. Bioresour. Technol. ,2000,71:29—39
[25] Ingram T,Rogalinski T,Bockemühl V,et al. J. Supercrit.Fluids,2009,48: 238—246
[26] Yu Y,Lou X,Wu H. Energy Fuels,2008,22: 46—60
[27] Mosier N,Hendrickson R,Ho N,et al. Bioresour. Technol. ,2005,96: 1986—1993
[28] Lavarack B P,Griffin G J,Rodman D. Biomass Bioenergy,2002,23: 367—380
[29] Mosier N S, Sarikaya A, Ladisch C M, et al. Biotechnol.Progr. ,2001,17: 474—480
[30] Chong A R,Ramírez J A,Garrote G. J. Food Eng. ,2004,61:143—152
[31] Lu Y,Mosier N S. Biotechnol. Bioeng. ,2008,101: 1170—1181
[32] Qian X,Nimlos M R,Davis M,et al. Carbohydr. Res. ,2005,340: 2319—2327
[33] Kootstra A M J,Mosier N S,Scott E L,et al. Biochem. Eng.J. ,2008,43: 92—97
[34] Antal M J,Leesomboon T,Mok W S,et al. Carbohydr. Res. ,1991,217: 71—85
[35] Girisuta B,Danon B,Manurung R,et al. Bioresour. Technol. ,2008,99: 8367—8375
[36] Marzialetti T,Olarte M B V,Sievers C,et al. Ind. Eng. Chem.Res. ,2008,47: 7131—7140
[37] Nabarlatz D,Farriol X,Montané D. Ind. Eng. Chem. Res. ,2004,43: 4124—4131
[38] Gámez S,González-Cabriales J J,Ramírez J A,et al. J. Food Eng. ,2006,74: 78—88
[39] Nabarlatz D,Ebringerová A,Mantané D. Carbohydr. Ploym. ,2007,69: 20—28
[40] Kalman G,Varga E,Reczey K. Chem. Biochem. Eng. Q. ,2002,16: 151—157
[41] Tillman L M,Lee Y Y,Torget R. Appl. Biochem. Biotechnol. ,1990,24 /25: 103—113
[42] Chundawat S P S, Venkatesh B, Dale B E. Biotechnol.Bioeng. ,2007,96: 219—231
[43] Zhu Y M, Lee Y Y, Elander R T. Appl. Biochem.Biotechnol. ,2004,117: 103—114
[44] Van Walsum G P, Shi H. Bioresour. Technol. ,2004,93:217—226
[45] Nguyen Q A,Tucker M P. US 6423145,2002
[46] Saha B C,Iten L B,Cotta M A,et al. Biotechnol. Progr. ,2005,21: 816—822
[47] Yuan C M,Yan Y J,Ren Z W,et al. The Chinese Journal of Process Engineering,2004,4(1) : 64—68
[48] Mansilla H,Baeza J,Urzúa S, et al. Bioresour. Technol. ,1998,66: 189—193
[49] Liu C,Wyman C E. Carbohydr. Res. ,2006,341: 2550—2556
[50] Zhu S,Wu Y,Yu Z,et al. Biosyst. Eng. ,2006,93: 279—283
[51] Pan X J,Arato C,Gilkes N,et al. Biotechnol. Bioeng. ,2005,90: 473—481
[52] Jacobsen S E,Wyman C E. Appl. Biochem. Biotechnol. ,2000,84—86: 81—96
[53] Saeman J F. Ind. Eng. Chem. ,1945,37: 43—52
[54] Bhandari N, Macdonald D G. , Bakhshi N N. Biotechnol.Bioeng. ,1984,26: 320—327
[55] Yan L S,Zhang H M,Chen J W,et al. Bioresour. Technol. ,2009,100: 1803—1808
[56] Kobayashi T,Sakai Y. Bull. Agr. Chem. Soc. Japan,1956,20: 1—7
[57] Esteghlalian A,Hashimoto A G,Fenske J J,et al. Bioresour.Technol. ,1997,59: 129—136
[58] Mehlberg R,Tsao G T. Low Liquid Hemicellulose Hydrolysis Hydrochloric Acid. 178th ACS National Meeting. Washington DC: ACS,1979
[59] Chen R,Lee Y Y,Torget R W. Appl. Biochem. Biotechnol. ,1996,57 /58: 133—146
[60] Jensen J,Morinelly J,Aglan A,at al. AIChE J. ,2008,54:1637—1645
[61] Yat S C,Berger A,Shonnard D R. Bioresour. Technol. ,2008,99: 3855—3863
[62] Carrasco F,Roy C. Wood Sci. Technol. ,1992,26: 189—208
[63] Lloyd T,Wyman C E. Appl. Biochem. Biotechnol. ,2003,105 /108: 53—67
[64] Springer E L,Harris J F. Ind. Eng. Chem. Prod. Res. Dev. ,1985,24: 485—589
[65] Maloney M T,Chapman T W,Baker A J. Biotechnol. Bioeng. ,1985,27: 355—361
[66] Overend R P,Chornet E. Phil. Trans. R. Soc. Lond A,1987,321: 523—536
[67] Chum H L,Johnson D K,Black S K,et al. Appl. Biochem.Biotechnol. ,1990,24 /25: 1—14
[68] Abatzoglou N,Chornet E,Belkacemi K,at al. Chem. Eng.Sci. ,1992,47: 1109—1122
[69] Mochidzuki K, Sakoda A, Suzuki M. Adv. Environ. Res. ,2003,7: 421
[70] 徐明忠(Xu M Z) ,庄新姝( Zhuang X S) ,袁振宏(Yuan Z H)等. 过程工程学报( The Chinese Journal of Process Engineering) ,2008,8(5) : 941—944
[71] Kim S B,Yum D M,Park S C. Bioresour. Technol. ,2000,72: 289—294
[72] Dan V,Tim E. US 6927048,2005
[73] 高振(Gao Z) ,张昆( Zhang K) ,黄和(Huang H) 等. 化学进展( Progress in Chemistry) ,2009,21(1) : 251—258

[1] Qi Qi, Peizhu Xu, Zhidong Tian, Wei Sun, Yangjie Liu, Xiang Hu. Recent Advances of the Electrode Materials for Sodium-Ion Capacitors [J]. Progress in Chemistry, 2022, 34(9): 2051-2062.
[2] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[3] Zhao Ding, Weijie Yang, Kaifu Huo, Leon Shaw. Thermodynamics and Kinetics Tuning of LiBH4 for Hydrogen Storage [J]. Progress in Chemistry, 2021, 33(9): 1586-1597.
[4] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[5] Tingting Gu, Jian Gu, Yu Zhang, Hua Ren. Metal Borohydride-Based System for Solid-State Hydrogen Storage [J]. Progress in Chemistry, 2020, 32(5): 665-686.
[6] Li Chao, Fan Meiqiang, Chen Haichao, Chen Da, Tian Guanglei, Shu Kangying. Thermodynamics and Kinetics Modifications on the Li-Mg-N-H Hydrogen Storage System [J]. Progress in Chemistry, 2016, 28(12): 1788-1797.
[7] Yuan Zhengqiu, Long Jinxing, Zhang Xinghua, Xia Ying, Wang Tiejun, Ma Longlong. Catalytic Conversion of Lignocellulose into Energy Platform Chemicals [J]. Progress in Chemistry, 2016, 28(1): 103-110.
[8] Jiang Binbo, Yuan Shiling, Chen Nan, Wang Haibo, Wang Jingdai, Huang Zhengliang. Reaction Kinetics of n-Butane Oxidation on VPO Catalyst [J]. Progress in Chemistry, 2015, 27(11): 1679-1688.
[9] Chu Genbai, Chen Jun, Liu Fuyi, Sheng Liusi. Kinetics of Gas-Phase Radical Reactions Using Photoionization Mass Spectrometry with Synchrotron Source [J]. Progress in Chemistry, 2012, 24(11): 2097-2105.
[10] Ma Guanglu, Zhuang Dawei, Dai Hongbin, Wang Ping. Controlled Hydrogen Generation by Reaction of Aluminum with Water [J]. Progress in Chemistry, 2012, 24(04): 650-658.
[11] . Advances in the Anionic Ring Opening Polymerization Mechanism and Dynamics of Hexamethylcyclotrisiloxane(D3) [J]. Progress in Chemistry, 2010, 22(06): 1169-1176.
[12] Wang Yan Tao Zhanliang Chen Jun. Mg-Based Transition-Metal Complex Hydrides with 18-Electronic Structure [J]. Progress in Chemistry, 2010, 22(01): 234-240.
[13] Li Yuntao Zhong Qin. Recent Advances in Mechanisms and Kinetics of Low-Temperature Selective Catalytic Reduction of NOX with NH3 [J]. Progress in Chemistry, 2009, 21(6): 1094-1100.
[14] Liang Yan Wang Ping Dai Hongbin. Hydrogen Generation from Catalytic Hydrolysis of Sodium Borohydride Solution [J]. Progress in Chemistry, 2009, 21(10): 2219-2228.
[15] Li Yang Jiang Guoxiang Niu Junfeng** Wang Ying Hu Lijuan. Laccase-Catalyzed Oxidation of Organic Pollutants in Water [J]. Progress in Chemistry, 2009, 21(10): 2028-2036.