中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (04): 648-653 Previous Articles   Next Articles

• Invited Article •

Applications of Cyclic Peptide Nanotubes

Tang Min; Fan Jianfen*; Liu Jian; He Liangjun; He Ke   

  1. ( College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China)
  • Received: Revised: Online: Published:
  • Contact: Fan Jianfen E-mail:jffan1305@163.com
PDF ( 1885 ) Cited
Export

EndNote

Ris

BibTeX

Cyclopeptides, adopting β-sheet-like arrangements, can easily stack to form hollow tubular ensembles through the intermolecular hydrogen-bond network. A wide range of multi-structural and functional cyclopeptide nanotubes can be produced by changing the structures and numbers of peptide subunits employed or modifying with variant functional groups. Firstly, the present paper reviews the application progress of the experimental and theoretical researches of self-assembling cyclopeptide nanotubes mimicking biologic transmembrane channels, focusing on the influences of the structures, polarities and hydrophobic properties on the transportation properties and the progress of molecular dynamic (MD) simulations of cyclopeptide nanotubes as water transportation channels. Secondly, the experimental research advances of cyclopeptide nanotubes using as the templets to produce biosensors by synthesis with functional nanomaterials such as electronic, optical and magnetic ones. The following brings forth the potential application foregrounds of cyclopeptide nanotubes functionating as medicines or drug carriers, especially in developing antibacterial and anti-infectional drugs. Finally, the experimental and theoretical research progress of the applications of cyclopeptide nanotubes functionating as the templets to prepare magnetic and electronic nanomaterials is reviewed.

Contents
1 Introduction
2 Applications of cyclic peptide nanotubes
2.1 Transmembrane ion channels
2.2 Biosensors
2.3 Antibacterial and drug-delivery agents
2.4 Megnetic and electronic nanomaterials
3 Outlook

CLC Number: 

[1 ] Ghadiri M R,Granja J R,Milligan R,et al. Nature,1993,366: 324—327
[2 ] Hartgerink J D,Granja J R,Milligan R A, et al. J. Am.Chem. Soc. ,1996,118(1) : 43—50
[3 ] Seebach D,Matthews J L,Meden A,et al. Helvetica Chimica Acta,1997,80: 173—182
[4 ] Clark T D,Buriak J M,Kobayashi K,et al. J. Am. Chem.Soc. ,1998,120(35) : 8949—8962
[5 ] Ranganathan D,Lakshmi C,Karle I L,et al. J. Am. Chem.Soc. ,1999,121(26) : 6103—6107
[6 ] Gauthier D,Baillargeon P,Drouin M,et al. Angew. Chem.Int. Ed. ,2001,40(24) : 4635—4638
[7 ] Amorin M,Castedo L,Granja J R. J. Am. Chem. Soc. ,2003,125(10) : 2844—2845
[8 ] Horne W S,Stout C D,Ghadiri M R. J. Am. Chem. Soc. ,2003,125(31) : 9372—9376
[9 ] Scanlon S,Aggeli A. Nano Today,2008,3(3 /4) : 22—30
[10] Brea R J,Vazquez M E,Mosquera M,et al. J. Am. Chem.Soc. ,2007,129(6) : 1653—1657
[11] Janshoff A,Dancil K P S,Steinem C,et al. J. Am. Chem.Soc. ,1998,120(46) : 12108—12116
[12] Bong D T,Ghadiri M R. Angew. Chem. Int. Ed. ,2001,113(11) : 2221—2224
[13] Kim H S,Hartgerink J D,Ghadiri M R. J. Am. Chem. Soc. ,1998,120(18) : 4417—4424
[14] Ghadiri M R,Granja J R,Buehler L K. Nature,1994,369:301—304
[15] Bong D T,Clark T D,Granja J R,et al. Angew. Chem. Int.Ed. ,2001,40(6) : 988—1011
[16] Sánchez-Quesada J,Isler M P,Ghadiri M R. J. Am. Chem.Soc. ,2002,124(34) : 10004—10005
[17] Kienker P K,DeGrado W F,Lear J D. Proc. Natl. Acad. Sci.USA,1994,91: 4859—4863
[18] Clark T D,Buehler L K,Ghadiri M R. J. Am. Chem. Soc. ,1998,120(4) : 651—656
[19] Asthagiri D,Bashford D. Biophys. J. ,2002,82 ( 3 ) : 1176—1189
[20] Roux B,Karplus M. Biophys. J. ,1991,59: 961—981
[21] Roux B,Karplus M. J. Am. Chem. Soc. ,1993,115 ( 8 ) :3250—3262
[22] Hao Y,Pear M R,Busath D D. Biophys. J. ,1997,73 ( 4 ) :1699—1716
[23] Åqvist J,Luzhkov V. Nature,2000,404(6780) : 881—884
[24] Cheng J,Zhu J C,Liu B. Chemical Physics,2007,333: 105—111
[25] Hwang H,Schatz G C,Ratner M A. J. Phys. Chem. B,2006,110(51) : 26448—26460
[26] Dehez F,Tarek M,Chipot C. J. Phys. Chem. B,2007,111(36) : 10633—10635
[27] Delemotte L,Dehez F,Treptow W,et al. J. Phys. Chem. B,2008,112 (18) : 5547—5550
[28] Engels M,Bashford D,Ghadiri M R. J. Am. Chem. Soc. ,1995,117(36) : 9151—9158
[29] Tarek M,Maigret B,Chipot C. Biophys. J. ,2003,85 ( 4 ) :2287—2298
[30] De Groot B L,Grubmüller H. Science,2001,294: 2353—2357
[31] Cho E C,Choi J W,Lee M,et al. Colloids and Surfaces A:Physicochem. Eng. Aspects,2008,313 /314: 95—99
[32] Motesharei K,Ghadiri M R. J. Am. Chem. Soc. ,1997,119(46) : 11306—11312
[33] Horne W S,Wiethoff C M,Cui C,et al. Bioorganic & Medicinal Chemistry,2005,13: 5145—5153
[34] Fernandez-Lopez S,Kim H S,Choi E C,et al. Nature,2001,412(6845) : 452—455
[35] Yan X H,He Q,Wang K W,et al. Angew. Chem. Int. Ed. ,2007,46: 2431—2434
[36] Ranganathan D,Haridas V,Gilardi R,et al. J. Am. Chem.Soc. ,1998,120(42) : 10793—10800
[37] Granja J R,Ghadiri M R. J. Am. Chem. Soc. ,1994,116(23) : 10785—10786
[38] Sánchez-Quesada J,Kim H S,Ghadiri M R. Angew. Chem. ,2001,113(13) : 2571—2574
[39] Khurana E,Nielsen S O,Ensing B,et al. J. Phys. Chem. B,2006,110(38) : 18965—18972
[40] Khurana E,DeVane R H,Kohlmeyer A,et al. Nano Letters,2008,8(11) : 3626—3630
[41] Chipot C,Tarek M. Physical Biology,2006,3: S20—S25
[42] Hwang H,Schatz G C,Ratner M A. J. Phys. Chem. A,2009,113(16) : 4780—4787
[43] Monticelli L,Kandasamy S K, Periole X, et al. J. Chem.Theory Comput. ,2008,4(5) : 819—834
[44] Banerjee I A,Yu L T,Shima M,et al. Advanced Materials,2005,17: 1128—1131
[45] Ashkenasy N,Horne W S,Ghadiri M R. Small,2006,2 (1 ) :99—102
[46] Brea R J,Amorin M,Castedo L,et al. Angew. Chem. Int.Ed. ,2005,44: 5710—5713
[47] Brea R J,Vázquez M E,Mosquera M,et al. J. Am. Chem.Soc. ,2007,129(6) : 1653—1657
[48] Brea R J,Castedo L,Granja J R,et al. PNAS,2007,104(13) : 5291—5294
[49] Couet J,Samuel J D J S,Kopyshev A,et al. Angew. Chem.Int. Ed. ,2005,44: 3297—3301
[50] Lewis J P,Pawley N H,Sankey O F. J. Phys. Chem. B,1997,101(49) : 10576—10583
[51] Carloni P,Andreoni W,Parrinello M. Phys. Rev. Lett. ,1997,79(4) : 761—764
[52] Fukasaku K, Takeda K, Shiraishi K. J. Phys. Soc. Jpn. ,1998,67(11) : 3751—3760
[53] Sanyal B,Eriksson O. Physical Review B,2008,77(15) : art.no. 155407 (1—6)

[1] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[2] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[3] Yangyang Zhou, Jian Zhong, Xiaojun Bian, Gang Liu, Liang Li, Juan Yan. Application of Signal Amplification Technology in the Area of Food Safety Detection [J]. Progress in Chemistry, 2018, 30(2/3): 206-224.
[4] Deng Wangping, Wang Lihua, Song Shiping, Zuo Xiaolei. Biosensors in POCT Application [J]. Progress in Chemistry, 2016, 28(9): 1341-1350.
[5] Cao Ya, Zhu Xiaoli, Zhao Jing, Li Hao, Li Genxi. Electrochemical Analysis of Tumor Marker Proteins [J]. Progress in Chemistry, 2015, 27(1): 1-10.
[6] Song Yingpan, Feng Miao, Zhan Hongbing*. Application of Graphene Edge Effect in Electrochemical Biosensors [J]. Progress in Chemistry, 2013, 25(05): 698-706.
[7] Li Jing, Yang Xiaoying*. Applications of Novel Carbon Nanomaterials——Graphene and Its Derivatives in Biosensing [J]. Progress in Chemistry, 2013, 25(0203): 380-396.
[8] Wen Yanli, Lin Meihua, Pei Hao, Lu Na, Fan Chunhai. Electrochemical-Based MicroRNA Sensors [J]. Progress in Chemistry, 2012, (9): 1656-1664.
[9] Song Yingpan, Feng Miao, Zhan Hongbing. Applications of Graphene Nanocomposites in Electrochemical Biosensors [J]. Progress in Chemistry, 2012, (9): 1665-1673.
[10] Dong Haifeng, Zhang Xueji. DNA Biosensors Based on Functional Nanoprobes [J]. Progress in Chemistry, 2012, 24(11): 2247-2254.
[11] Shi Wentao, Di Jing, Ma Zhanfang. Electrochemical Glucose Biosensors [J]. Progress in Chemistry, 2012, 24(04): 568-576.
[12] Wei Yan, Liu Zhonggang, Gao Chao, Wang Lun, Liu Jinhuai, Huang Xingjiu. Electrochemical Sensors and Biosensors Based on Nanomaterials: A New Approach for Detection of Organic Micropollutants [J]. Progress in Chemistry, 2012, 24(04): 616-627.
[13] . Application of Quantum Dots Based Electrochemical Biosensors [J]. Progress in Chemistry, 2010, 22(11): 2179-2190.
[14] . Interactions between Carbon Nanotubes and Biomolecules [J]. Progress in Chemistry, 2010, 22(09): 1767-1775.
[15] . Application of Molecular Simulation in Biosensor Development [J]. Progress in Chemistry, 2010, 22(05): 845-851.
Viewed
Full text


Abstract

Applications of Cyclic Peptide Nanotubes