中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (04): 593-602 Previous Articles   Next Articles

• Invited Article •

Magnetic Iron Oxide Nanoparticles Immobilized Enzymes

Xin Baojuan; Xing Guowen**   

  1. (College of Chemistry, Beijing Normal University, Beijing 100875, China)
  • Received: Revised: Online: Published:
  • Contact: Xing Guowen E-mail:gwxing@bnu.edu.cn
  • Supported by:

    National Natural Science Foundation of China

PDF ( 2894 ) Cited
Export

EndNote

Ris

BibTeX

Nanoparticles can be used as the carriers of immobilized enzymes,and the magnetic nanoparticle immobilized enzymes are easy to operate, separate and recover from the reaction system. Moreover, utilizing an external magnetic field the movement manner and direction of the immobilized enzyme can be controlled to improve their catalytic efficiency, compared with the traditional mechanical stirring ways. Among many nano-materials, iron oxide has received considerable attention because of its magnetic, catalytic, and other good characteristics of high-profile. In this paper, a variety of magnetic iron oxide nanoparticles immobilized enzymes, especially the preparation and application of immobilized lipase and protease are reviewed. The advantages and shortcomings of the magnetic iron oxide nanoparticles immobilized enzymes and the future developing prospects are also discussed.

Contents
1 Introduction
2 Magnetic iron oxide nanoparticles immobilized lipase
2.1 Magnetic polymer microsphere immobilized lipase
2.2 Magnetic nanoparticles directly immobilized lipase
2.3 Magnetic siliceous mesocellular foam immobilized lipase
3 Magnetic iron oxide nanoparticles immobilized protease
3.1 Immobilized α-chymotrypsin
3.2 Immobilized papain
3.3 Immobilized trypsin
4 Other magnetic iron oxide nanoparticles immobilized enzymes
5 Conclusion and outlook

CLC Number: 

[1 ] Lu A H,Salabas E L,Schuth F. Angew. Chem. Int. Ed. ,2007,46: 1222—1244
[2 ] Cao L Q. Curr. Opin. Chem. Biol. ,2005,9: 217—226
[3 ] Liao M H,Chen D H. Biotechnol. Lett. ,2001,23: 1723—1727
[4 ] Rossi L M,Quach A D,Rosenzweig Z. Anal. Bioanal. Chem. ,2004,380: 606—613
[5 ] Horst F,Rueda E H,Ferreira M L. Enzyme Microb. Technol. ,2006,38: 1005—1012
[6 ] Kim J,Grate J W,Wang P. Trends Biotechnol. ,2008,26:639—646
[7 ] 杨勇(Yang Y) ,李彦锋( Li Y F) ,拜永孝( Bai Y X) 等. 化学通报( Chemistry) ,2007,(4) : 257—263
[8 ] Cao L Q. 载体固定化酶———原理、应用和设计( Carrierboundimmobilized enzymes: principles, applications and design) ( 杨晟,袁中一译) ( Trans. Yang S,Yuan Z Y) . 北京: 化学工业出版社( Beijing: Chemical Industry Press) ,2008
[9 ] 邹海平( Zou H P) ,邱祖民( Qiu Z M ) ,邱俊明( Qiu J M )等. 化工科技( Science and Technology in Chemical Industry) ,2006,14: 54—59
[10] 赵紫来( Zhao Z L) ,卞征云( Bian Z Y) ,陈朗星( Chen L X)等. 化学进展( Progress in Chemistry) ,2006,18: 1288—1297
[11] 赵红丽( Zhao H L) ,琚行松( Ju X S) ,芮玉兰( Rui Y L) 等.唐山师范学院学报( Journal of Tangshan Teachers College ) ,2005,27: 1—5
[12] 张玉( Zhang Y) ,张卫民( Zhang W M ) ,孙中溪( Sun Z X) .化学进展( Progress in Chemistry) ,2007,19: 1503—1509
[13] Ghanem A,Aboul-Enein H Y. Chirality,2005,17: 1—15
[14] Gandhi N N,Patil N S,Sawant S B,et al. Cat. Rev. Sci.Eng. ,2000,42: 439—480
[15] Hasan F,Shah A A,Hameed A. Enzyme Microb. Technol. ,2006,39: 235—251
[16] Gross R,Kalra B,Kumar A. Chem. Rev. ,2001,101: 2097—2124
[17] Yuan D Z,Zhang Q Y,Zhuang H P,et al. J. Mater. Sci.Eng. ,2006,24: 306—310
[18] Yang Y,Bai Y X,Li Y F,et al. Process Biochem. ,2008,43:1179—1185
[19] Yang Y,Bai Y X,Li Y F,et al. J. Magn. Magn. Mater. ,2008,320: 2350—2355
[20] Lei L,Bai Y X,Li Y F,et al. J. Magn. Magn. Mater. ,2009,321: 252—258
[21] 杨勇( Yang Y) . 兰州大学硕士论文( Mastes Dissertation of Lanzhou University) ,2008
[22] Zeng L,Luo K K,Gong Y F. J. Mol. Catal. B-Enzym. ,2006,38: 24—30
[23] Guo Z,Bai S,Sun Y. Enzyme Microb. Technol. ,2003,32:776—782
[24] Mahmood I,Guo C,Xia H S,et al. Ind. Eng. Chem. Res. ,2008,47: 6379—6385
[25] Reetz M T,Zonta A,Vijayakrishnan V,et al. J. Mol. Catal.A-Chem. ,1998,134: 251—258
[26 ] Chen J P,Lin W S. Enzyme Microb. Technol. ,2003,32:801—811
[27] Huang S H,Liao M H,Chen D H. Biotechnol. Prog. ,2003,19: 1095—1100
[28] Bai S,Guo Z,Liu W,et al. Food Chem. ,2006,96: 1—7
[29] Dyal A,Loos K,Noto M,et al. J. Am. Chem. Soc. ,2003,125: 1684—1685
[30] 张艳梅( Zhang Y M) . 中国科学院大连化学物理研究所博士论文( Doctoral Dissertation of Dalian Institute of Chemical Physics,Chinese Academy of Sciences) ,2008
[31] Yang Q H,Liu J,Zhang L,et al. J. Mater. Chem. ,2009,19:1945—1955
[32] Zhang Y M,Zhao L F,Li J,et al. Biochem. Biophys. Res.Commun. ,2008,372: 650—655
[33] Zhang Y M,Li J,Han D F,et al. Biochem. Biophys. Res.Commun. ,2008,365: 609—613
[34] Otto H H,Schirmeister T. Chem. Rev. ,1997,97: 133—171
[35] Kim J,Lee J,Na H B,et al. Small,2005,1: 1203—1207
[36] 洪军(Hong J) ,徐冬梅(Xu D M) ,孙汉文( Sun H W) 等. 高等学校化学学报( Chemical Journal of Chinese Universities) ,2007,28: 177—182
[37] Hong J,Xu D M,Gong P J,et al. J. Mol. Catal. B-Enzym. ,2007,45: 84—90
[38] Hong J,Gong P J,Xu D M,et al. J. Biotechnol. ,2007,128:597—605
[39] Hong J,Gong P J,Yu J H,et al. J. Mol. Catal. B-Enzym. ,2006,42: 99—105
[40] Hong J,Xu D M,Gong P J,et al. J. Chromatogr. B,2007,850: 499—506
[41] Hong J,Gong P J,Xu D M,et al. J. Appl. Polym. Sci. ,2007,105: 1882—1887
[42] Liang Y Y,Zhang L M. Biomacromolecules,2007,8: 1480—1486
[43] Nishimura K,Hasegawa M,Ogura Y,et al. J. Appl. Phys. ,2002,91: 8555—8556
[44] Li Y,Xu X Q,Deng C H,et al. J. Proteome Res. ,2007,6:3849—3855
[45] Wang S,Bao H M,Yang P Y,et al. Anal. Chim. Acta,2008,612: 182—189
[46] Lu Y,Yin Y,Mayers B T,et al. Nano Lett. ,2002,2: 183—186
[47] Deng Y H,Wang C C,Hu J H, et al. Colloid Surf. APhysicochem.Eng. Asp. ,2005,262: 87—93
[48] Deng Y H,Qi D W,Zhao D Y,et al. J. Am. Chem. Soc. ,2008,130: 28—29
[49] Deng Y H,Deng C H,Zhao D Y,et al. Adv. Mater. ,2009,21: 1377—1382
[50] Liu J,Deng Y H,Zhao D Y,et al. J. Colloid Interface Sci. ,2009,333: 329—334
[51] Xu C J,Xu K M,Gu H W,et al. J. Am. Chem. Soc. ,2004,126: 3392—3393
[52] Xu C J,Xu K M,Gu H W,et al. J. Am. Chem. Soc. ,2004,126: 9938—9939
[53] 孙黎明( Sun L M) ,曹旭鹏( Cao X P) ,虞星炬( Yu X J) 等.动物学报(Acta Zoologica Sinica) ,2006,52: 780—787
[54] Shukoor M I,Natalio F,Therese H A,et al. Chem. Mater. ,2008,20: 3567—3573
[55] Herdt A R,Kim B S,Taton T A. Bioconjugte Chem. ,2007,18: 183—189
[56] Koh I,Wang X,Varughese B,English D S,et al. J. Phys.Chem. B,2006,110: 1553—1558
[57] Wang L,Bao J,Wang L,et al. Chem. Eur. J. ,2006,12:6341—6347
[58] Lin H A,Liu C H,Huang W C,et al. Chem. Mater. ,2008,20: 6617—6622
[59] Johnson A K,Zawadzka A M,Deobald L A,et al. J. Nanopart.Res. ,2008,10: 1009—1025
[60] Liu X Q,Ma Z Y,Xing J M,et al. J. Magn. Magn. Mater. ,2004,270: 1—6
[61] Yu C C,Lin P C,Lin C C. Chem. Commun. ,2008,1308—1310
[62] Xing G W,Li X W,Tian G L,et al. Tetrahedron,2000,56:3517—3522
[63] Xing G W,Liu D J,Ye Y H,et al. Tetrahedron Lett. ,1999,40: 1971—1974
[64] Xin B J, Xing G W. The Symposium of CCS 6th National Organic Chemistry Conference,Xi’an,2009,227

[1] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[2] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[3] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[4] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[5] Dong Yang, Keyi Gao, Baiqin Yang, Lei Lei, Lixia Wang, Chaohua Xue. Classification of Microfluidic System and Applications in Nanoparticles Synthesis [J]. Progress in Chemistry, 2021, 33(3): 368-379.
[6] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[7] Ding Jingjing, Lili Huang, Haiyan Xie. Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor [J]. Progress in Chemistry, 2020, 32(9): 1252-1263.
[8] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[9] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[10] Rui Bai, Xiaochun Tian, Shuhua Wang, Weifu Yan, Haiyin Gang, Yong Xiao. Noble Metal Nanoparticles Produced by Microorganism [J]. Progress in Chemistry, 2019, 31(6): 872-881.
[11] Yihuan Liu, Xin Hu, Ning Zhu, Kai Guo. Microfluidic Synthesis of Micro-and Nanoparticles [J]. Progress in Chemistry, 2018, 30(8): 1133-1142.
[12] Shanye Yang, Xiangxue Wang, Zhongshan Chen, Qian Li, Benben Wei, Xiangke Wang. Synthesis of Fe3O4-Based Nanomaterials and Their Application in the Removal of Radionuclides and Heavy Metal Ions [J]. Progress in Chemistry, 2018, 30(2/3): 225-242.
[13] Dongdong Zhang, Jingmin Liu, Yaoyao Liu, Meng Dang, Guozhen Fang, Shuo Wang. The Application of Nanoparticles in Drug Delivery [J]. Progress in Chemistry, 2018, 30(12): 1908-1919.
[14] Zhichao Yu, Chun Tang, Li Yao, Qing Gao, Zushun Xu, Tingting Yang. Preparation of Hollow Mesoporous Materials by Polymer-Based Templates [J]. Progress in Chemistry, 2018, 30(12): 1899-1907.
[15] Hongmei Bi, Xiaojun Han. Design and Fabrication of Magnetically Responsive Drug Delivery Carriers [J]. Progress in Chemistry, 2018, 30(12): 1920-1929.