中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (04): 573-579 Previous Articles   Next Articles

• Invited Article •

Preparation and Application of Porous Material Supported Gold Catalysts

Song Haiyan; Li Gang**; Wang Xiangsheng   

  1. (State Key Laboratory of Fine Chemicals, Department of Catalytical Chemistry and Engineering, Dalian University of Technology, Dalian 116012, China)
  • Received: Revised: Online: Published:
  • Contact: Li Gang E-mail:liganghg@dlut.edu.cn
  • Supported by:

    ;National Natural Science Foundation of China

PDF ( 1770 ) Cited
Export

EndNote

Ris

BibTeX

This review outlines recent development of preparation, characterization and application of microporous material and mesoporous material supported gold catalysts. The selection of the microporous supports or mesoporous supports (unmodified oxides, microporous molecular sieves, mesoporous oxides, mesoporous molecular sieves and mesoporous carbon materials), the latest preparation methods of porous material supported gold catalysts (deposition-precipitation, sol-gel method, in situ/one-step method and chemical vapor deposition) and characterizations, as well as catalytic performance (carbon monoxide low-temperature oxidation, direct synthesis of hydrogen peroxide from hydrogen and oxygen, direct propylene epoxidation in the presence of hydrogen and oxygen and selective oxidation of organic compounds) are summarized. Meanwhile, the problem, as well as the research and development direction of porous material supported gold catalysts is presented.

Contents
1 Introduction
2 Preparation of porous material supported gold catalysts
2.1 Selection of support
2.2 Preparation methods
3 Catalytic performance and application of supported gold catalysts
3.1 CO low-temperature oxidation
3.2 Direct propylene epoxidation in the presence of H2/O2
3.3 Direct synthesis of H2O2 from H2/O2
3.4 Selective oxidation of organic compounds
4 Conclusion

CLC Number: 

[1 ] Iizuka Y,Tode T,Haruta M,et al. J. Catal. ,1999,187:50—58
[2 ] Daté M,Haruta M. J. Catal. ,2001,201: 221—224
[3 ] Boccuzzi F,Chiorino A,Haruta M,et al. J. Catal. ,2001,202: 256—267
[4 ] Okumura M,Coronado J M,Haruta M,et al. J. Catal. ,2001,203: 168—174
[5 ] Landon P,Collier P J,Hutchings G J,et al. Chem. Commun. ,2002,2058—2059
[6 ] Li G,Edwards J,Hutchings G J, et al. Catal. Commun. ,2007,8: 247—250
[7 ] Li G,Edwards J,Hutchings G J,et al. Catal. Today,2006,114: 369—371
[8 ] Li G,Edwards J,Hutchings G J,et al. Catal. Today,2007,122: 361—364
[9 ] Abad A,Concepción P,Corma A,et al. Angew. Chem. Int.Ed. ,2005,44: 4066—4069
[10] 徐新(Xu X) ,罗国华( Luo G H) ,赵如松( Zhao R S) . 石油化工( Technology Petrochemical) ,2005,34: 898—902
[11] Moreau F,Bond G C. Catal. Today,2007,122: 215—221
[12] Olea M,Iwasawa Y. Appl. Catal. A: General,2004,275:35—42
[13] Bravo-Suárez J J, Bando K K, Oyama S T, et al. Chem.Commun. ,2008,3272—3274
[14] Lu J,Zhang X,Oyama S T,et al. Catal. Today,2009,147:186—195
[15] Bravo-Suárez J J,Bando K K,Oyama S T,et al. J. Catal. ,2008,257: 32—42
[16] Sierraalta A,Alejos P,Ehrmann E,et al. J. Mol. Catal. A:Chem. ,2009,301: 61—66
[17] Salama T M,Ohnishi R,Shido T,et al. J. Catal. ,1996,162:169—178
[18] Mohamed M M,Mekkawy I. J. Phys. Chem. Solids,2003,64:299—306
[19] Hosseini M,Siffert S,Tidahy H L,et al. Catal. Today,2007,122: 391—396
[20] Sreethawong T, Yoshikawa S. Catal. Commun. , 2005, 6:661—668
[21] Fu G,Cai W,Gan Y,et al. Chem. Phys. Lett. ,2004,385:15—19
[22] Chen W,Zhang J,Cai W. Scripta Mater. ,2003,48: 1061—1066
[23] Seker E,Gulari E. Appl. Catal. A: General,2002,232:203—217
[24] Yin D,Qin L,Liu J,et al. J. Mol. Catal. A: Chem. ,2005,240: 40—48
[25] Li J,Zhan Y,Zheng Q,et al. Acta Phys. Chim. Sin. ,2008,24: 932—938
[26] Li J,Zhan Y,Zheng Q,et al. Chin. J. Catal. ,2008,29:346—350
[27] Campo B,Volpe M,Ivanova S,et al. J. Catal. ,2006,242:162—171
[28] Campo B,Petit C,Volpe M A. J. Catal. ,2008,254: 71—78
[29] Yuan Z Y,Idakiev V,Vantomme A,et al. Catal. Today,2008,131: 203—210
[30] Zheng S,Gao L. Mater. Chem. Phys. ,2002,78: 512—517
[31] Sobczak I,Kusior A,Grams J,et al. J. Catal. ,2007,245:259—266
[32] Sobczak I,Kusior A,Ziolek M. Catal. Today,2008,137:203—208
[33] Sobczak I,Kieronczyk N,Trejda M,et al. Catal. Today,2008,139: 188—195
[34] Uphade B S,Okumura M,Haruta M,et al. Appl. Catal. A:General,2000,190: 43—50
[35] Uphade B S,Yamada Y,Haruta M,et al. Appl. Catal. A:General,2001,215: 137—148
[36] Sinha A K, Seelan S, Haruta M, et al. Appl. Catal. A:General,2003,240: 243—252
[37] Chatterjee M, Ikushima Y,Hakuta Y, et al. Adv. Synth.Catal. ,2006,348: 1580—1590
[38] Lee B,Zhu H,Dai S, et al. Micropor. Mesopor. Mater. ,2004,70: 71—80
[39] Overbury S H,Ortiz-Soto L,Dai S,et al. Catal. Lett. ,2004,95: 99—106
[40] Song H,Li G,Wang X,et al. Prepr. Pap. Am. Chem. Soc. ,Div. Petr. Chem. ,2007,52: 297—298
[41] Song H,Li G,Wang X. Micropor. Mesopor. Mater. ,2009,120: 346—350
[42] Liu P H,Chang Y P,Chao K J,et al. Mat. Sci. Eng. C,2006,26: 1017—1022
[43] Jin Y,Wang P,Yu N,et al. Micropor. Mesopor. Mater. ,2008,111: 569—576
[44] Sacaliuc E,Beale A M,Weckhuysen B M,et al. J. Catal. ,2007,248: 235—248
[45] Ruszel M,Grzybowska B,aniecki M,et al. Catal. Commun. ,2007,8: 1284—1286
[46] Hutchings G J,Landon P,Xu Y J,et al. Top. Catal. ,2006,38: 223—230
[47] Tello A,Cárdenas G,Segura R A,et al. Carbon,2008,46:884—889
[48] Fási A,Hernádi K,Pálinkó I,et al. Catal. Lett. ,2006,87:343—348
[49] Song H Y,Li G,Wang X S. Catal. Today,2010,149: 127—131
[50] Uphade B S,Akita T,Haruta M,et al. J. Catal. ,2002,209:331—340
[51] Sinha A K,Seelan S,Haruta M,et al. Angew. Chem. Int.Ed. ,2004,43: 1546—1548
[52] Okumura M,Tsubota S,Haruta M. J. Mol. Catal. A: Chem. ,2003,199: 73—84
[53] Haruta M,Kobayashi T,Samo H,et al. Chem. Lett. ,1987,405—408
[54] 鲁继青( Lu J Q) ,罗孟飞( Luo M F) ,辛勤(Xin Q) . 化工进展( Chemical Industry and Engineering Progress) ,2007,26:306—309
[55] Bandyopadhyay M, Korsak O, Gies H, et al. Micropor.Mesopor. Mater. ,2006,89: 158—163
[56] Beck A,Horváth A,Guczi L,et al. Catal. Today,2008,139:180—187
[57] Liu X,Wang A,Zhang T,et al. Chem. Commun. ,2008,3187—3189
[58] Hernandez J A,Gómez S,Zepeda T A,et al. Appl. Catal. B:Environ. ,2009,89: 128—136
[59] Hayashi T,Tanaka K,Haruta M. J. Catal. ,1998,178: 566—575
[60] Nijhuis T A,Huizinga B J,Moulijn J A,et al. Ind. Eng.Chem. Res. ,1999,38: 884—891
[61] Chowdhury B,Bravo-Suárez J J,Haruta M,et al. J. Phys.Chem. B,2006,110: 22995—22999
[62] Lu J,Zhang X,Oyama S T,et al. Catal. Today,2007,123:189—197
[63] 王东辉(Wang D H) ,程代云( Cheng D Y) ,郝郑平( Hao Z P) 等. 纳米金催化剂及其应用( Gold Nanocatalyst and Its Application) . 北京: 国防工业出版社( Beijing: National Defense Industry Press) ,2006. 205—206
[64] Lunsford J H. J. Catal. ,2003,216: 455—460
[65] Choudhary V R,Jana P. Appl. Catal. A: General,2008,335:95—102
[66] Choudhary V R,Samanta C. J. Catal. ,2006,238: 28—38
[67] Ishihara T, Ohura Y, Yoshida S, et al. Appl. Catal. A:General,2005,291: 215—221
[68] Edwards J K,Solsona B E,Hutchings G J,et al. J. Catal. ,2005,236: 69—79
[69] Ma S,Li G,Wang X S. Chem. Lett. ,2006,35: 428—429
[70] Porta F,Prati L. J. Catal. ,2004,224: 397—403
[71] Carrettin S, Mcmorn P, Hutchings G J, et al. Chem.Commun. ,2002,696—697
[72] Jia M,Shen Y,Li C,et al. Catal. Lett. ,2005,99: 235—239
[73] Andreeva D,Tabakova T,Idakiev V,et al. Gold Bull. ,1998,31: 105—106
[74] Idakiev V,Ilieva L,Su B L,et al. Appl. Catal. A: General,2003,243: 25—39
[75] Andreeva D,Nedyalkova R,Ilieva L,et al. Appl. Catal. A:General,2003,246: 29—38
[76] Munteanu G,Ilieva L,Andreeva D,et al. Appl. Catal. A:General,2004,277: 31—40
[77] Si X,Chen S,He M Y,et al. Catal. Lett. ,2008,122: 321—324

[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[4] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[5] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[6] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[7] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[8] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[9] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[10] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[11] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[12] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[13] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[14] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[15] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.