中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (01): 51-57 Previous Articles   Next Articles

• Invited Article •

Synthesis, Structures and Properties of Inorganic-Organic Hybrid Polyoxovanadate

Liu Jinli;  Zhou Yinzhuang*   

  1. (Department of Chemistry, Capital Normal University, Beijing 100048, China)
  • Received: Revised: Online: Published:
  • Contact: Zhou Yinzhuang E-mail:zhouyz7813@x263.net
  • Supported by:

    Project Supported by Scientific Research Common Program of Beijing Municipal Commission of Education

PDF ( 1487 ) Cited
Export

EndNote

Ris

BibTeX

Inorganic-organic hybrid polyoxovanadate have various structures, and considerable efforts have been devoted to the research of these compounds due to their wide potential applications to material science as adsorption, redox, electronic, catalytic, luminescent, magnetic, porous, and chiral materials. The research progress of inorganic-organic hybrid polyoxovanadate are reviewed in this paper. The synthesis methods of these complexes are introduced. The structures are summarized according to the mode of organic components and inorganic framework. The potential applications in ion exchange, electrochemistry, magnetism, luminescent material and catalyst are commented. The research of these materials are also prospected.

Contents
1 The synthesis of inorganic-organic hybrid polyoxovanadate
2 The structures of inorganic-organic hybrid polyoxovanadate
2.1 Organic components as charge compensating cations, template agents, or structure directing agents
2.2 Organic components as ligands coordinated to metal centers to decorate/connect the framework
2.3 Phosphonic acids and carboxylic acids as ligands coordinated to metal centers to form hybrid framework
3 Properties of inorganic-organic hybrid polyoxovanadate
4 The outlook of inorganic-organic hybrid polyoxovanadate

CLC Number: 

[ 1 ]  Laye R H, Wei Q, Mason P V, et al. J. Am. Chem. Soc. ,2006, 128: 9020—9021
[ 2 ]  Ushak S, Spodine E, Fur E L, et al. Inorg. Chem. , 2006, 45:5393—5398
[ 3 ]  Glaser T, Theil H, Liratzis I, et al. Inorg. Chem. , 2006, 45:4889—4891
[ 4 ]  Dong B X, Peng J, Gomez-Garcia C J, et al. Inorg. Chem. ,2007, 46: 5933—5941
[ 5 ]  Zhang XM, Wu H S, Chen XM, et al. J. Solid State Chem. ,2003, 176: 69—75
[ 6 ]  Koene B E, TaylorN J, Nazar L F, et al. Angew. Chem. Int.Ed. , 1999, 38: 2888—2891
[ 7 ]  Zhang Y P, O’Connor C J, Zubieta J, et al. Angew. Chem.Int. Ed. Engl. , 1996, 35: 989—991
[ 8 ]  Zheng L M, Zhao J S, Lii K H, et al. Dalton Trans. , 1999,939—943
[ 9 ]  Law T S C, Williams I D. Chem. Mater. , 2000, 12:2070—2072
[ 10 ]  Zhang XM, TongM L, Chen X M. Chem. Commun. , 2000,1817—1818
[ 11 ]  Liu C M, Gao S, Kou H Z, et al. Chem. Commun. , 2001,1670—1671
[ 12 ]  Liu C M, Gao S, Hu H M, et al. Chem. Commun. , 2001,1636—1637
[ 13 ]  Bircsak Z, Harrison W T A. Inorg. Chem. , 1998, 37:3204—3208
[ 14 ]  Duan C Y, Tian Y P, Lu ZL, et al. Inorg. Chem. , 1995, 34:1—2
[ 15 ]  Hagrman P J, Zubieta J. Inorg. Chem. , 2000, 39: 3252—3260
[ 16 ]  JoniakovòD, Gyepes R, Rakovsk? E, et al. Polyhedron, 2006,25: 2491—2502
[ 17 ]  OuelletteW, Koo B K, Zubieta J, et al. Dalton Trans. , 2004,1527—1538
[ 18 ]  Lin B Z, Liu S X. Polyhedron, 2000, 19: 2521—2527
[ 19 ]  Saìudo E C, Ribasb J R, Winpenny R E P. New J. Chem. ,2007, 31: 1421—1423
[ 20 ]  Saìudo E C, Smith A A, Winpenny R E P. Dalton Trans. ,2006, 1981—1987
[ 21 ]  KhanM I, Lee Y S, O′Connor C J, et al. J. Am. Chem. Soc. ,1994, 116 (10) : 4525—4526
[ 22 ]  Zhou Y Z, Qiao H P. Inorg. Chem. Commun. , 2007,1318—1320
[ 23 ]  Soghomonian V, Chen Q, Haushalter R C, et al. Angew.Chem. Int. Ed. Engl. , 1995, 34: 223—226
[ 24 ]  Zhang XM, Hou J J, ZhangW X, et al. Inorg. Chem. , 2006,45: 8120—8125
[ 25 ]  Xu Y, Zhou G P, Zhu D R. Inorg. Chem. , 2008, 47:567—571
[ 26 ]  WelkM E, Stern C L, NorquistA J, et al. Cryst. Growth Des. ,2007, 7 (5) : 956—961
[ 27 ]  Finn R C, Sims J, O’Connor C J, et al. Dalton Trans. , 2002,159—163
[ 28 ]  Zhang C D, Liu S X, Xie L H, et al. J. Mol. Struct. , 2005,753: 40—44
[ 29 ]  Wang CM, Chuang Y L, Chuang S T, et al. J. Solid State Chem. , 2004, 177 (7) : 2305—2310
[ 30 ]  Che J X, Wei C X, Zhang Z C, et al. Inorg. Chim. Acta,2006, 359: 3396—3404
[ 31 ]  刘欣(Liu X) . 首都师范大学硕士论文(Master Dissertation of CapitalNormal University) , 2008
[ 32 ]  乔海平(Qiao H P) . 首都师范大学硕士论文(Master Dissertation of Capital Normal University) , 2007
[ 33 ]  FuM L, Guo G C, Wu A Q, et al. Eur. J. Inorg. Chem. ,2005: 3104—3108
[ 34 ]  Hagrman P J, Zubieta J. Inorg. Chem. , 2001, 40: 2800—2809
[ 35 ]  YangW B, Lu C Z. Inorg. Chem. , 2002, 41: 5638—5640
[ 36 ]  Zhou Y Z, Liu J L. Inorg. Chem. Commun. , 2009, 12: 243—245
[ 37 ]  Yan B B, Maggard P A. Inorg. Chem. , 2007, 46: 6640—6646
[ 38 ]  Sun C Y, Wang E B, Xiao D R, et al. J. Mol. Struct. , 2007,840: 53—58
[ 39 ]  Qu X S, Xu L, Gao G G, et al. Inorg. Chem. , 2007, 46:4775—4777
[ 40 ]  Yan B B, Luo J H, Maggard P A, et al. Inorg. Chem. , 2006,45: 5109—5118
[ 41 ]  Yang S H, Li G B, Tian S J, et al. Eur. J. Inorg. Chem. ,2006: 2850—2854
[ 42 ]  Law T S C, Sung H H Y, Williams I D. Inorg. Chem. Commun. , 2000, 3: 420—423
[ 43 ]  Vougo-Zanda M, Anokhina E V, Jacobson A J, et al. Inorg.Chem. , 2008, 47: 4746—4751
[ 44 ]  Barthelet K, Marrot J, Riou D, et al. Angew. Chem. Int. Ed. ,2002, 41: 282—284
[ 45 ]  Cheng C Y, Fu S J, Lin K J, et al. Angew. Chem. Int. Ed. ,2003, 42: 1937—1940
[ 46 ]  Yucesan G, Golub V, Zubieta J, et al. Dalton Trans. , 2005,2241—2251
[ 47 ]  Xiao D R, Xu Y, Wang E B, et al. Eur. J. Inorg. Chem. ,2004, 1385—1388
[ 48 ]  Lv J, Li Y G, Wang E B, et al. Inorg. Chim. Acta, 2004,357: 1193—1197
[ 49 ]  冯守华( Feng S H) ,徐如人(Xu R R) . 化学进展( Progress in Chemistry) , 2000, 12: 445—457
[ 50 ]  Fernández T L, AntunesO A C, ScarpelliniM, et al. J. Inorg.Biochem. , 2009, 103 (4) : 474—479

[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[6] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[7] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[8] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[9] Yang Guodong, Yuan Gaoqian, Zhang Jingzhe, Wu Jinbo, Li Faliang, Zhang Haijun. Porous Electromagnetic Wave Absorbing Materials [J]. Progress in Chemistry, 2023, 35(3): 445-457.
[10] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[11] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[12] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[13] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[14] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[15] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.