中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (01): 32-43 Previous Articles   Next Articles

• Invited Article •

Preparation and Application of Mesoporous Alumina

Yang Ling;  Feng Xuan;  Liu Yingliang**   

  1. (Department of Chemistry, Jinan University, Guangzhou 510632, China)
  • Received: Revised: Online: Published:
  • Contact: Liu Yingliang E-mail:tliuyl@jnu.edu.cn
PDF ( 2744 ) Cited
Export

EndNote

Ris

BibTeX

This paper has reviewed recent progress in preparation, characterization and application of mesoporous alumina (MA). We introduce the preparation methods of MA contrastively and respectively, and overview the post treatment method of precursors. Subsequently, by contrasting the average pore size, specific surface areas and morphology of MA, we discuss the influence factors on the preparation and thermal stability of MA, which involve preparation method, aluminum sources, template, reactant ratio, pH value, post treatment method of precursors and so on. In addition, analysis and characterization methods utilized in preparation of MA, including transmission electron microscopy(TEM) and selected area electron diffraction(SAED), X-ray powder diffraction(XRD) and low angle X-ray powder diffraction(LAXRD), gas adsorption-desorption method, different thermal and thermo gravimetry analysis(DT-TGA) and 27Al magic angle spinning nuclear magnetic resonance(27Al MAS NMR), are introduced in detail. Meanwhile, the development trend of preparation and application of MA for the field of catalytic, adsorption, optics and other fields is prospected.

Contents
1 Introduction
2 Preparation methods of MA
2.1 Hydrothermal method
2.2 Sol-gel method
2.3 Precipitation method
2.4 Micro-emulsion method
2.5 Ionic liquid method
2.6 Hard template method
2.7 Other methods and some combinatory methods
2.8 Post treatment method
3 Influence factors in preparation of MA and thermal stability of MA
3.1 Influence of different reaction conditions
3.2 Thermal stability of MA
3.3 Control of morphology
4 Analysis and characterization methods
4.1 Transmission electron microscope (TEM) and selected area electron diffraction(SAED)
4.2 X-ray powder diffraction (XRD) and low angle X-ray powder diffraction (LAXRD)
4.3 Gas adsorption-desorption method
4.4 Different thermal and thermo gravimetry analysis (DT-TGA)
4.5 27Al magic angle spinning nuclear magnetic resonance (27Al MAS NMR)
5 Application of MA
5.1 Application in catalytic field
5.2 Application in adsorption field
5.3 Application in optical field
5.4 Application in other fields
6 Prospects

CLC Number: 

[ 1 ]  Yang P D, Zhao D Y, Margolese D I, et al. Nature, 1998, 396(6707) : 152—155
[ 2 ]  Castro Y, Julian B, Boissière C, et al. Nanotechnology , 2007 ,18 (5) : 055705 /1—7
[ 3 ]  Yuan Z Y, Ren T Z, Vantomme A, et al. Chem. Mater. ,2004, 16: 5096—5106
[ 4 ]  BagshawS A, Pinnavaia T J. Angew. Chem. Int. Ed. , 1996 ,35: 1102—1105
[ 5 ]  Yada M, Okya M, Ohe K, et al. Langmuir, 2000, 16:1535—1541
[ 6 ]  Gan Z H, Ning G L, Lin Y, et al. Mater. Lett. , 2007, 61:3758—3761
[ 7 ]  Khaleel A. Micropor. Mesopor. Mat. , 2006, 91: 53—58
[ 8 ]  Ram S, Mohanty P. J. Mater. Sci. Lett. , 2002, 21:1127—1129
[ 9 ]  Liu Q, Wang A Q, Wang X D, et al. Micropor. Mesopor.Mat. , 2007, 100: 35—44
[ 10 ]  Kuznetsova T F, Ratpko A I. Colloid J. , 2004, 66 ( 6 ) :709—713
[ 11 ]  Sun Z X, Zheng T T, Bo Q B, et al. J. Colloid Interf. Sci. ,2008, 319: 247—251
[ 12 ]  Du T B, Jang SM, Chen B W. Chem. Eng. Sci. , 2007, 62:4864—4868
[ 13 ]  Zhang Z X, Bai P, Xu B J, et al. J. PorousMat. , 2006, 13:245—250
[ 14 ]  MayM, Navarrete J, AsomozaM, et al. J. PorousMat. , 2007,14: 159—164
[ 15 ]  Yang P D , Zhao D Y, Stucky G D, et al . Chem. Mater. ,1999, 11 : 2813 —2826
[ 16 ]  KuemmelM, Grosso D, Boissiére C, et al. Angew. Chem. Int.Ed. , 2005, 44: 4589—4592
[ 17 ]  Wan L J, Fu H G, Shi K Y, et al. Mater. Lett. , 2008, 62 (10 /11) : 1525—1527
[ 18 ]  李志平(Li Z P) , 赵瑞红( Zhao R H) , 郭奋(Guo F)等. 高等学校化学学报( Chemical Journal of Chinese Universities) ,2008, 29 (1) : 13—17
[ 19 ]  Aguado J, Escola J M, Castro M C, et al. Micropor. Mesopor.Mat. , 2005, 83: 181—192
[ 20 ]  张波( Zhang B) ,张豪杰( Zhang H J) ,王晶(Wang J) . 大连铁道学院学报( Journal of Dalian Railway Institute) , 2005, 26(3) : 67—71
[ 21 ]  Yuan Q, Yin A X, Luo C, et al. J. Am. Chem. Soc. , 2008,130: 3465—3472
[ 22 ]  Jagadish C R, You K S, Ahn J W, et al. Micropor. Mesopor.Mat. , 2007, 100: 183—190
[ 23 ]  Zhao R H, Guo F, Hu Y Q, et al. Micropor. Mesopor. Mat. ,2006, 93: 212—216
[ 24 ]  郭奋(Guo F) , 赵瑞红( Zhao R H) , 陈建峰( Chen J F) .CN101024503, 2007
[ 25 ]  田英良( Tian Y L) , 孙诗兵( Sun S B) , 张继光( Zhang J G) .CN101376517, 2009
[ 26 ]  Zhang X, Zhang F, Chan K Y. Mater. Lett. , 2004, 58: 2872—2877
[ 27 ]  OilkováN, ZukalA, ˇ Cejka J. Micropor. Mesopor. Mat. , 2006,95: 176—179
[ 28 ]  田丹碧( Tian D B) , 章靖( Zhang J ) , 李万博(LiW B)等.CN101372342, 2009
[ 29 ]  Liu Q, Wang A Q, Wang X D, et al. Chem. Mater. , 2006,18: 5153—5155
[ 30 ]  Hamed A, MahyarM, Razieh K, et al. J. Am. Cera. Soc. ,2007, 90 (10) : 3311—3313
[ 31 ]  Kim Y H, Kim CM, Kim P, et al. J. Non2Cryst. Solids, 2005,351: 550—556
[ 32 ]  Bai P, Su F B, Wu P P, et al. Langmuir, 2007, 23:4599—4605
[ 33 ]  Grosso D, Cagnol F, Soler2Illia G J A A, et al. Adv. Funct.Mater. , 2004, 14: 309—322
[ 34 ]  Sicard L, Llewellyn P L, Patarin J, et al. Micropor. Mesopor.Mat. , 2001, 44: 195—201
[ 35 ]  YadaM, OkyaM, MachidaM, et al. Chem. Commun. , 1998,1941—1942
[ 36 ]  Valange S, Guth J L, Kolenda F, et al. Micropor. Mesopor.Mat. , 2000, 35 /36: 597—607
[ 37 ]  Márquez2Alvarez C, OilkováN, Pérez2Pariente J, et al. Catalysis Reviews, 2008, 50 (2) : 222—286
[ 38 ]  阮文彪(RuanW B) , 郭瑞松( Guo R S) , 吕振刚(Lv Z G) .材料工程与科学学报( Journal ofMaterials Science and Engineering) , 2005, 23 (4) : 601—603
[ 39 ]  Xu B J, Xiao T C, Yan Z F, et al. Micropor. Mesopor. Mat. ,2006, 91: 293—295
[ 40 ]  Li C Z, He J H. Langmuir, 2006, 22: 2827—2831
[ 41 ]  Liu Q, Wang A Q, Wang X D, et al. Micropor. Mesopor.Mat. , 2006, 92: 10—21
[ 42 ]  赵东元( Zhao D Y) , 罗骞( Luo J ) , 屠波( Tu B ) 等.CN1346801, 2002
[ 43 ]  Deng D H, Tang R, Liao X P, et al. Langmuir, 2008, 24:368—370
[ 44 ]  徐如人(Xu R R) , 庞文琴( PangW Q) . 分子筛与多孔材料化学( Zeolite and PorousMaterial Chemistry) . 北京:科学出版社(Beijing: Science Press) , 2004. 145
[ 45 ]  ˇ Cejka J, OilkováN, Rothousky J, et al. Langmuir, 2004, 20:7532—7539
[ 46 ]  Bai P, Wu P P, Zhao G F, et al. J. Mater. Chem. , 2008, 18:74—76
[ 47 ]  Seo J G, YounM H, Cho KM. J. Power Sources, 2007, 173:943—949
[ 48 ]  ElisaM, Maurizio L, Loretta S, et al. App l. Catal. A: General,2008, 335: 46—55
[ 49 ]  Wang Y F, Bryan C, Xu H F, et al. J. Colloid Interf. Sci. ,2002, 254: 23—30
[ 50 ]  杨泠(Yang L) , 黄亚林(Huang Y L) , 容建华(Rong J H)等.无机化学学报(Chinese Journal of Inorganic Chemistry) , 2008,24 (9) : 1412—1416
[ 51 ]  Shen H Y, Maekawa H, Kawamura J, et al. Solid State Ionics,2006, 177: 2403—2406

[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[4] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[5] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[6] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[7] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[8] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[9] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[10] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[11] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[12] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[13] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[14] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[15] Ying Geng, Mohe Zhang, Jin Fu, Ruisha Zhou, Jiangfeng Song. MOF-74 and Its Compound: Diverse Synthesis and Broad Application [J]. Progress in Chemistry, 2021, 33(12): 2283-2307.