中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (01): 241-247 Previous Articles   Next Articles

• Invited Article •

Hydrogen Storage Properties of Complex Hydrides Loaded in Porous Materials

Li Yongtao1;  Zhou Guangyou1;  Fang Fang1;  Chen Guorong1;  Sang Ge2;  Sun Dalin1**   

  1. (1. Department of Materials Science, Fudan University, Shanghai 200433, China; 2. China Academy of Engineering Physics, Mianyang 621900, China)
  • Received: Revised: Online: Published:
  • Contact: Sun Dalin E-mail:dlsun@fudan.edu.cn
  • Supported by:

    National Natural Science Foundation of China

PDF ( 1545 ) Cited
Export

EndNote

Ris

BibTeX

Complex hydrides have been extensively studied because of their higher gravimetric hydrogen density than that of conventional metal hydrides. It has been found that an improved hydrogen storage property is obtained by loading complex hydrides into porous materials which have attracted much attention owing to their high specific surface area, uniform and controllable pore diameter and good thermostability. This paper begins with a brief introduction to the structural characteristics and physical and chemical properties of porous materials, and then the advances in the study of complex hydrides incorporated into porous materials, including preparation methods, catalytic effect and mechanism on the dehydrogenation/rehydrogenation performance, are outlined. The key issues needed to be solved are discussed.

Contents
1 Introduction
2 Structural characteristics and physical and chemical properties of porous materials
3 Complex hydrides loaded into porous materials
3.1 Methods to load complex hydrides into porous materials
3.2 Dehydrogenation/rehydrogenation performance of complex hydrides loaded into porous materials
3.3 Catalytic mechanisms of complex hydrides loaded into porous materials
4 Summary and outlook

CLC Number: 

[ 1 ]  SchlapbachL, ZüttelA. Nature, 2001, 414: 353—358
[ 2 ]  GeorgeW C, Mildred S D, Michelle V B. Phys. Today, 2004,12: 39—44
[ 3 ]  Züttel A. Mater. Today, 2003, 9: 24—33
[ 4 ]  Zhang Q A, Nakamura Y, Oikawa K, et al. Inorg. Chem. ,2002, 41 (25) : 6547—6549
[ 5 ]  Chater P A, David W F, Johnson S R, et al. Chem. Commun. ,2006, 23: 2439—2441
[ 6 ]  Brinks H W, Fossdal A, Hauback B C. J. Phys. Chem. C,2008, 112: 5658—5661
[ 7 ]  Bogdanovic′B, Eberle U, Felderhoff M, et al. Scrip ta Mater. ,2007, 56: 813—816
[ 8 ]  Orimo S, Nakamori Y, Züttel A. Mater. Sci. Eng. B, 2004,108: 51—53
[ 9 ]  Chen P, Xiong Z T, Luo J Z, et al. Nature, 2002, 420: 302—304
[ 10 ]  DompabloM, Ceder G. J. Alloys Compd. , 2004, 364: 6—12
[ 11 ]  Orimo S, Nakamori Y, Jennifer R E, et al. Chem. Rev. , 2007,107: 4111—4132
[ 12 ]  Nakamori Y, Miwa K, Ninomiya A, et al. Phys. Rev. B, 2006,74 (4) : art. no. 045126
[ 13 ]  Au M, Spencer W, Jurgensen A, et al. J. Alloys Compd. ,2008, 462: 303—309
[ 14 ]  Yang J, Ciureanu M, Roberge R. Mater. Lett. , 2000, 43 ( 5 /6) : 234—239
[ 15 ]  FichtnerM. Adv. Funct. Mater. , 2005, 7 (6) : 443—456
[ 16 ]  Chen P, ZhuM. Mater. Today, 2008, 11: 36—43
[ 17 ]  Bogdanovic′B, FelderhoffM, Pommerin A, et al. Adv. Mater. ,2006, 18: 1198—1201
[ 18 ]  Saita I, Toshima T, Tanda S, et al. Mater. Trans. , 2006, 47(3) : 931—934
[ 19 ]  Brinks H W, Hauback B C, Srinivasan S S, et al. J. Phys.Chem. B, 2005, 109: 15780—15785
[ 20 ]  LiW, Li C, Ma H, et al. J. Am. Chem. Soc. , 2007, 129:6710—6711
[ 21 ]  Wu H. Chem. Phys. Chem. , 2008, 9: 2157—2162
[ 22 ]  Zhao D, Feng J, Huo Q, et al. Science, 1998, 279: 548—552
[ 23 ]  Su B, Lu X, Lu Q. J. Am. Chem. Soc. , 2008, 130: 14356—14357
[ 24 ]  Somorjai G A, Park J Y. Angew. Chem. Int. Ed. , 2008, 47:9212—9228
[ 25 ]  Hoffmann F, Cornelius M, Morell J, Frêba M. Angew. Chem.Int. Ed. , 2006, 45: 3216—3251
[ 26 ]  Zhao D, Huo Q, Feng J, et al. J. Am. Chem. Soc. , 1998,120: 6024—6036
[ 27 ]  Zaworotko M J. Nature, 2008, 451: 410—411
[ 28 ]  He X, Antonelli D. Angew. Chem. Int. Ed. , 2002, 41: 214—229
[ 29 ]  Chen H R, Shi J L, Li Y S, et al. Adv. Mater. , 2003, 15:1078—1081
[ 30 ]  Li L, Shi J L, Yan J, Chen H G, et al. App l. Catal. A: Gerneral, 2004, 263 (2) : 613—617
[ 31 ]  ShenW H, Dong X P, Zhu Y F, et al. Micro. Meso. Mater. ,2005, 85 (1 /2) : 157—162[ 32 ]  Li L, Shi J L. Chem. Commun. , 2008, 8: 996—998
[ 33 ]  Gu J L, Shi J L, You J L, et al. Adv. Mater. , 2005, 17 (5) :557—560
[ 34 ]  Qin F, Shi J L, Wei C Y, et al. J. Mater. Chem. , 2008, 18:634—636
[ 35 ]  Kockrick E, Krawiec P, Schnelle W, et al. Adv. Mater. ,2007, 19: 3021—3026
[ 36 ]  ZhaoW R, Gu J L, Zhang L X, et al. J. Am. Chem. Soc. ,2005, 127 (25) : 8916—8917
[ 37 ]  ZhaoW R, Chen H R, Li Y S, et al. Adv. Funct. Mater. ,2008, 18 (18) : 2780—2788
[ 38 ]  Seayad A M, Antonelli D M. Adv. Mater. , 2004, 16 ( 9 /10) :765—777
[ 39 ]  Zaluska A, ZaluskiL, Strom-Olsen J O. App l. Phys. A, 2001,72 (2) : 157—165
[ 40 ]  Gutowska A, Li L, Shin Y S, et al. Angew. Chem. Int. Ed. ,2005, 44: 3578—3582
[ 41 ]  Zheng S Y, Fang F, Zhou G Y, et al. Chem. Mater. , 2008,20: 3954—3958
[ 42 ]  BaldéC P, Hereijgers B P, Bitter J H, et al. Angew. Chem.Int. Ed. , 2006, 45: 3501—3503
[ 43 ]  GrossA F, Vajo J J, Van Atta S L, et al. Phys. Chem. C,2008, 112 (14) : 5655—5657
[ 44 ]  Yu X B, Wu Z, Chen Q R, et al. App l. Phys. Lett. , 2007,90: art. no. 034106
[ 45 ]  Zhang Y, ZhangW S, WangA Q, et al. Int. J. Hydrogen Energy, 2008, 32: 3976—3980
[ 46 ]  Orimo S, Fujii H. App l. Phys. A, 2001, 72: 167—186
[ 47 ]  BérubéV, Radtke G, Dresselhaus M, et al. Int. J. Energy Res. , 2007, 31: 637—663
[ 48 ]  Fujii H, Orimo S. Physica B, 2003, 328: 77—80
[ 49 ]  Dymova T N, Eliseeva N G, Bakum S I, et al. Dokl. Akad.Nauk SSSR, 1974, 215: 1369—1372
[ 50 ]  Bogdanovic′B, Schwickardi M. J. Alloys Compd. , 1997, 1:253—254

[1] Jie Wang, Yaqing Feng, Bao Zhang. MOF-COF Hybrid Frameworks Materials [J]. Progress in Chemistry, 2022, 34(6): 1308-1320.
[2] Bo Tang, Wei Wang, Aiqin Luo. New Porous Materials Used as Chiral Stationary Phase for Chromatography [J]. Progress in Chemistry, 2022, 34(2): 328-341.
[3] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[4] Suyan Zhao, Chang Liu, Hao Xu, Xiaobo Yang. Two-Dimensional Covalent Organic Frameworks Photocatalysts [J]. Progress in Chemistry, 2020, 32(2/3): 274-285.
[5] Qiang Jia, Hongwei Song, Sheng Tang, Jing Wang, Yinxian Peng. Synthesis of the Functionalized Porous Materials and Their Applications in the Specific Recognition and Separation [J]. Progress in Chemistry, 2019, 31(8): 1148-1158.
[6] Jie Liu, Yuan Zeng, Jun Zhang, Haijun Zhang, Jianghao Liu. Preparation, Structures and Properties of Three-Dimensional Graphene-Based Materials [J]. Progress in Chemistry, 2019, 31(5): 667-680.
[7] Xinxin Jiang, Chengjun Zhao, Chunju Zhong, Jianping Li*. The Electrochemical Sensors Based on MOF and Their Applications [J]. Progress in Chemistry, 2017, 29(10): 1206-1214.
[8] Yu Xianglin, Chen Xiaojiao, Zhang Biyu, Rao Cong, He Yuan, Li Junbo. Ordered Mesoporous Material-Based Fluorescence Probes and Their Applications [J]. Progress in Chemistry, 2016, 28(6): 896-907.
[9] Yu Na, Ding Huimin, Wang Cheng. Synthesis and Application of Organic Molecular Cages [J]. Progress in Chemistry, 2016, 28(12): 1721-1731.
[10] Wang Fangli, Hong Min, Xu Lidan, Geng Zhirong. Nanomaterial-Based Surface-Assisted Laser Desorption Ionization Mass Spectroscopy [J]. Progress in Chemistry, 2015, 27(5): 571-584.
[11] Zhang Xiaomin, Zhang Li, He Xueying, Wu Juntao. Fabrication and Application of New Polymer-Based Materials by Freeze-Drying [J]. Progress in Chemistry, 2014, 26(11): 1832-1839.
[12] Wang Wenqian, Chen Linfeng, Wen Yongqiang*, Zhang Xueji, Song Yanlin, Jiang Lei. Mesoporous Silica Nanoparticle-Based Controlled-Release System [J]. Progress in Chemistry, 2013, 25(05): 677-691.
[13] Fu Yanyan, Yan Xiuping*. Metal-Organic Framework Composites [J]. Progress in Chemistry, 2013, 25(0203): 221-232.
[14] Zou Yongjin, Xiang Cuili, Qiu Shujun, Chu Hailiang, Sun Lixian*, Xu Fen. Nanoconfined Materials for Hydrogen Storage [J]. Progress in Chemistry, 2013, 25(01): 115-121.
[15] Ma Liqun, Zhai Shangru, Liu Na, Zhai Bin, An Qingda. Controlled Fabrication and Application of Platelet SBA-15 Materials [J]. Progress in Chemistry, 2012, 24(04): 471-482.