中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (01): 1-8   Next Articles

• Invited Article •

Microsolvation Process of Biomolecules

Zhong Liang;  Hu Yongjun**;  Xing Da;  Zou Hao   

  1. (South China Normal University, MOE Key Lab of Laser Life Science & Institute of Laser Life Science, Guangzhou 510631, China)
  • Received: Revised: Online: Published:
  • Contact: Hu Yongjun E-mail:yjhu@scnu.edu.cn
PDF ( 1871 ) Cited
Export

EndNote

Ris

BibTeX

Researches on the dynamics of microsolvation process is a hot topic. Combining spectroscopy and mass spectrometry with ab initio or density functional theory (DFT) computation methods, we can understand how the solvent molecules affect configurations and conformers of the biomolecules in the gas phase by studying of clusters of biomolecules and solvent molecules. We introduce several advanced experimental technologies and their applications in the field at first., and then list a few theoretical methods for calculation and simulation. The recent research progress on the microsolvation process of the amino acids with the solvent molecules such as water, methanol, and the recent studies on the solvent clusters of the nucleobases, sugars and neurotransmitters are reviewed. Future prospects in this field are provided in the end.

Contents
1 Introduction
2 Experimental technologies and theoretical methods
2.1 Experimental technologies
2.2 Theoretical methods
3 Research progresses on the microsolvation process of several biomolecules
3.1 Amino acids
3.2 Nucleobases
3.3 Sugars
3.4 Neurotransmitters
4 Conclusion and prospects

CLC Number: 

[ 1 ]  Brechignac P, Coutant B. Z. Phys. D: At. Mol. Clusters,1989, 14: 87—88
[ 2 ]  Vu T B C, Kalkman I, MeertsW L, et al. J. Chem. Phys. ,2008, 128: art. no. 214311
[ 3 ]  Chuchev K, BelBruno J J. J. Mole. Struct. THEOCHEM,2008, 850: 111—120
[ 4 ]  Abo2Riziq A, Crews B, Grace L, et al. J. Am. Chem. Soc. ,2005, 127: 2374—2375
[ 5 ]  Tanner C, Thut M, Steinlin A, et al. J. Phys. Chem. A,2006, 110: 1758—1766
[ 6 ]  Cüarcüabal P, Jockusch R A, Hunig I, et al. J. Am. Chem. Soc. , 2005, 127: 11414—11425
[ 7 ]  Hall R B. J. Phys. Chem. , 1987, 91: 1007—1015
[ 8 ]  Boesl U, Neusser H J, Schlag E W. J. Chem. Phys. , 1980,72: 4327—4333
[ 9 ]  Crews B, Abo2Riziq A, Grace L, et al. Phys. Chem. Chem. Phys. , 2005, 7: 3015—3020
[ 10 ]  Dian B C, LongarteA, Zwier T S. Science, 2002, 296: 2369—2373
[ 11 ]  Dian B C, Clarkson J R, Zwier T S. Science, 2004, 303:1169—1173
[ 12 ]  Zwier T S. J. Phys. Chem. A, 2001, 105: 8827—8839
[ 13 ]  Carcabal P, Kroemer R T, Snoek L C, et al. Phys. Chem. Chem. Phys. , 2004, 6: 4546—4552
[ 14 ]  Jensen J H, Day P N, GordonM S, et al. ACS Symposium Series 569 ( Ed. Smith D A) . American Chemical Society, 1994.139—151
[ 15 ]  Day P N, Jensen J H, Gordon M S, et al. J. Chem. Phys. ,1996, 105: 1968—1986
[ 16 ]  Adamovic I, FreitagM A, GordonM S. J. Chem. Phys. , 2003,118: 6725—6732
[ 17 ]  Song J, GordonM S, Deakyne C A, et al. J. Phys. Chem. A,2004, 108: 11419—11432
[ 18 ]  Kirkwood J G. J. Chem. Phys. , 1934, 2: 351—361
[ 19 ]  Onsager L. J. Am. Chem. Soc. , 1936, 58: 1486—1493
[ 20 ]  Miertus S, Scrocco E, Tomasi J. Chem. Phys. , 1981, 55:117—129
[ 21 ]  Klamt A, Schuurmann G. J. Chem. Soc. Perkin Trans. 2,1993, 799—805
[ 22 ]  Truong T N, Stefanovich E V. Chem. Phys. Lett. , 1995, 240:253—260
[ 23 ]  Li J, Hawkins G D, Cramer C J, et al. Chem. Phys. Lett. ,1998, 288: 293—298
[ 24 ]  Hawkins GD, Zhu T, Li J, et al. Abstracts of Papers of the ACS( Eds. Gao J, Thomp son M A ) . American Chemical Society,1997. 197
[ 25 ]  Russell S T, WarshelA. J. Mol. Biol. , 1985, 185: 389—404
[ 26 ]  Rzepa H S, Yi M. J. Chem. Soc. Perkin Trans. 2, 1991,531—537
[ 27 ]  De VriesA H, Van Duijnen P T, Juffer A H, et al. J. Comp.
[ 28 ]  Bandyopadhyay P, GordonM S. J. Chem. Phys. , 2000, 113:1104—1109
[ 29 ]  Fernandez2Ramos A, Smedarchina Z, Siebrand W, et al. J.Chem. Phys. , 2000, 113: 9714—9721
[ 30 ]  Bandyopadhyay P, GordonM S, Mennucci B, et al. J. Chem.Phys. , 2002, 116: 5023—5032
[ 31 ]  Cui Q. J. Chem. Phys. , 2002, 117: 4720—4728
[ 32 ]  Aikens CM, Mark S, GordonM S. J. Am. Chem. Soc. , 2006,128: 12835—12850
[ 33 ]  ShirtsM R, Pande V S. J. Chem. Phys. , 2005, 122: art. no.134508
[ 34 ]  Kassab E, Langlet J, Evleth E, et al. J. Mole. Struct. THEO CHEM, 2000, 531: 267—282
[ 35 ]  Peteanu L A, Levy D H. J. Phys. Chem. , 1988, 92:6554—6561
[ 36 ]  Teh C K, Sip ior J, Sulkes M. J. Phys. Chem. , 1989, 93:5393—5400
[ 37 ]  Snoek L C, Kroemer R T, Simons J P. Phys. Chem. Chem.Phys. , 2002, 4: 2130—2139
[ 38 ]  Ebata T, Hashimoto T, Ito T, et al. Phys. Chem. Chem.Phys. , 2006, 8: 4783—4791
[ 39 ]  Desiraju G R, Steiner T. TheWeak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press, 1999
[ 40 ]  KaczorA, Reva I D, Proniewicz L M, et al. J. Phys. Chem.A, 2006, 110: 2360—2370
[ 41 ]  Lee K T, Sung J, Lee K J, et al. J. Chem. Phys. , 2002, 116:8251—8254
[ 42 ]  Tajkhorshid E, Jalkanen K J, Suhai S. J. Phys. Chem. B,1998, 102: 5899—5913
[ 43 ]  Park SW, Ahn D S, Lee S. Chem. Phys. Lett. , 2003, 371:74—79
[ 44 ]  Ahn D S, Park SW, Jeon I S, et al. J. Phys. Chem. B, 2003,107: 14109—14118
[ 45 ]  Balta B, Aviyente V. J. Comput. Chem. , 2004, 25: 690—703
[ 46 ]  Rodziewicz P, DoltsinisN L. ChemPhysChem, 2007, 8: 1959—1968
[ 47 ]  Blom M N, Compagnon I, Polfer N C, et al. J. Phys. Chem.A, 2007, 111: 7309—7316
[ 48 ]  Suenram R D, Lovas F J. J. Mol. Spectrosc. , 1978, 72: 372—382
[ 49 ]  GutowskiM, Skurski P, Simons J. J. Am. Chem. Soc. , 2000,122: 10159—10162
[ 50 ]  Wada G, Tamura E, OkinaM, et al. Bull. Chem. Soc. Jpn. ,1982, 55: 3064—3067
[ 51 ]  Gaffney J S, Pierce R C, Friedman L. J. Am. Chem. Soc. ,1977, 99: 4293—4298
[ 52 ]  GordonM S, Jensen J H. Acc. Chem. Res. , 1996, 29: 536—543
[ 53 ]  Lijima K, Tanaka K, Onuca S. J. Mol. Struct. , 1991, 246:257—266
[ 54 ]  Nguyen D T, ScheimerA C, Andzelm J W, et al. J. Comput.Chem. , 1997, 18: 1609—1631
[ 55 ]  Jensen J H, Gordon M S. J. Am. Chem. Soc. , 1995, 117:8159—8170
[ 56 ]  Alonso J L, Cocinero E J, LesarriA, et al. Angew. Chem. Int.Ed. , 2006, 45: 3471—3174
[ 57 ]  Chaudhari A, Sahu P K, Lee S L. J. Chem. Phys. , 2004,120: 170—174
[ 58 ]  WangW, Pu X, ZhengW, et al. J. Mol. Struct. THEOCHEM,2003, 626: 127—132
[ 59 ]  FormerW, Otto P, Bernhardt J, et al. Theor. Chim. Acta,1981, 60: 269—281
[ 60 ]  Kokpol S U, Doungdee P B, Hannongbua S V, et al. J. Chem. Soc. Faraday Trans. , 1988, 284: 1789—1792
[ 61 ]  Bachrach SM. J. Phys. Chem. A, 2008, 112: 3722—3730
[ 62 ]  Yamabe S, Ono N, Tsuchida N. J. Phys. Chem. A, 2003,107: 7915—7922
[ 63 ]  Jeon I S, Ahn D S, Park SW, et al. Inter. J. Quan. Chem. ,2005, 101: 55—66
[ 64 ]  Xu S J, NillesM, Bowen K H. J. Chem. Phys. , 2003, 119:10696—10701
[ 65 ]  Diken E G, Headrick J M, Johnson M A. J. Chem. Phys. ,2005, 122: art. no. 224317
[ 66 ]  Piuzzi F, MonsM, Dimicoli I, et al. Chem. Phys. , 2001, 270:205—214
[ 67 ]  Kim N J, Kang H, Jeong G, et al. J. Phys. Chem. A, 2000,104: 6552—6557
[ 68 ]  Kang H, Lee K T, Kim S K. Chem. Phys. Lett. , 2002, 359:213—219
[ 69 ]  Close D M, Crespo2Hernandez C E, Gorb L, et al. J. Phys.Chem. A, 2006, 110: 7485—7490
[ 70 ]  HanusM, Ryjacek F, KabelacM, et al. J. Am. Chem. Soc. ,2003, 125: 7678—7688
[ 71 ]  HanusM, Kabelac M, Rejnek J, et al. J. Phys. Chem. B,2004, 108: 2087—2097
[ 72 ]  Belau L, Wilson K R, Leone S R, et al. J. Phys. Chem. A,2007, 111: 7562—7568
[ 73 ]  Kim S K, Lee W, Herschbach D H. J. Phys. Chem. , 1996,100: 7933—7937
[ 74 ]  He Y G, Wu C Y, KongW. J. Phys. Chem. A, 2004, 108:943—949
[ 75 ]  KabelacM, Hobza P. Chem. Eur. J. , 2001, 7: 2067—2074
[ 76 ]  KabelacM, Ryjacek F, Hobza P. Phys. Chem. Chem. Phys. ,2000, 2: 4906—4909
[ 77 ]  Sivanesan D, Sumathi I, Welsh W J. Chem. Phys. Lett. ,2003, 367: 351—360
[ 78 ]  HaranczykM, Rak J, GutowskiM, et al. J. Phys. Chem. B,2005, 109: 13383—13391
[ 79 ]  Eustis S, WangD, Lyapustina S, et al. J. Chem. Phys. , 2007,127: art. no. 224309
[ 80 ]  Jockusch R A, Talbot F O, Simons J P. Phys. Chem. Chem.Phys. , 2003, 5: 1502—1507
[ 81 ]  Jockusch R A, Kroemer R T, Talbot F O, et al. J.Chem. , 1995, 16: 1445—1446Chem. , 2003, 107: 10725—10732
[ 82 ]  Jockusch R A, Kroemer R T, Talbot F O, et al. J. Am. Chem.Soc. , 2004, 126: 5709—5714
[ 83 ]  Talbot F O, Simons J P. Phys. Chem. Chem. Phys. , 2002, 4:3562—3565
[ 84 ]  Hunig I, Painter A J, Jockusch R A, et al. Phys. Chem.Chem. Phys. , 2005, 7: 2474—2480
[ 85 ]  Schmidt R, Karp lus M, Brady J W. J. Am. Chem. Soc. ,1996, 118: 541—546
[ 86 ]  Hoog C, Widmalm G. J. Phys. Chem. , 2001, 105:6375—6379
[ 87 ]  Sun S, Bernstein E R. J. Am. Chem. Soc. , 1996, 118:5086—5095
[ 88 ]  Yaov J, Im H S, Foltin M, et al. J. Phys. Chem. A, 2000,10: 6197—6211
[ 89 ]  Brause R, Fricke H, GerhardsM, et al. Chem. Phys. , 2006,327: 43—53
[ 90 ]  Giardiniv A, Marotta V, Paladini A, et al. App l. Sur. Sci. ,2007, 253: 7767—7772
[ 91 ]  Floriov GM, Zwier T S. J. Phys. Chem. A, 2003, 107: 974—983
[ 92 ]  Hu Y J, Bernstein E R. J. Chem. Phys. , 2008, 128: art. no.164311

[1] Lusha Gao, Jingwen Li, Hui Zong, Qianyu Liu, Fansheng Hu, Jiesheng Chen. Condensed Matter and Chemical Reactions in Hydrothermal Systems [J]. Progress in Chemistry, 2022, 34(7): 1492-1508.
[2] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[3] Rui Wang, Guoan Tai, Zenghui Wu, Wei Shao, Chuang Hou, Jinqian Hao. Theoretical and Experimental Research of Boron Nanostructures [J]. Progress in Chemistry, 2019, 31(12): 1696-1711.
[4] Yangrong Yao, Suyuan Xie. Structures and Progress of Carbon Clusters [J]. Progress in Chemistry, 2019, 31(1): 50-62.
[5] Yu Xianglin, Chen Xiaojiao, Zhang Biyu, Rao Cong, He Yuan, Li Junbo. Ordered Mesoporous Material-Based Fluorescence Probes and Their Applications [J]. Progress in Chemistry, 2016, 28(6): 896-907.
[6] Zhao Yanxia, He Shenggui. Reactivity of Heteronuclear Oxide Clusters with Small Molecules [J]. Progress in Chemistry, 2016, 28(4): 401-414.
[7] Gong Dejun, Gao Guanbin, Zhang Mingxi, Sun Taolei. Chiral Gold Nanoclusters: Synthesis, Properties and Applications [J]. Progress in Chemistry, 2016, 28(2/3): 296-307.
[8] Shen Yanfang, Xu Chang, Huang Min, Wang Haiyan, Cheng Longjiu. Research Advances of Boron Clusters, Borane and Metal-Doped Boron Compounds [J]. Progress in Chemistry, 2016, 28(11): 1601-1614.
[9] Wang Xiao, Xu Jiying, Chen Yid:\PDF\.pdf. Surface Plasmon Resonance Methodology for Interaction Kinetics of Biomolecules [J]. Progress in Chemistry, 2015, 27(5): 550-558.
[10] Yan Fei, Liu Xiangyang, Zhao Dongjiao, Bao Weixing, Dong Xiaoping, Xi Fengna*. Application of Fluorescent Gold Nanoclusters for the Determination of Small Molecules [J]. Progress in Chemistry, 2013, 25(05): 799-808.
[11] Su Peifeng, Wu Wei. Ab Initio Computational Method for Classical Valence Bond Theory [J]. Progress in Chemistry, 2012, 24(06): 1001-1007.
[12] Jia Jianfeng, Wu Haishun. Stability Rule of Ⅲ-ⅤPolyhedral Clusters [J]. Progress in Chemistry, 2012, 24(06): 1008-1022.
[13] Zhang Chunfang, Ma Haitao, Bian Wensheng. Highly Accurate Ab Initio Potential Energy Surface for Chemical Reactions [J]. Progress in Chemistry, 2012, 24(06): 1082-1093.
[14] Yuriko Aoki, Feng Long Gu. Elongation Method for Delocalized Nano-wires [J]. Progress in Chemistry, 2012, 24(06): 886-909.
[15] Xu Yuanhong, Xiong Xingquan, Cai Lei, Tang Zhongke, Ye Zhangji. Thiol-Ene Click Chemistry [J]. Progress in Chemistry, 2012, 24(0203): 385-394.
Viewed
Full text


Abstract

Microsolvation Process of Biomolecules