中文
Announcement
More
Progress in Chemistry 2009, Vol. 21 Issue (6): 1179-1186 Previous Articles   Next Articles

• Review •

Preparation Methods of Inorganic Nano Rare Earth Luminescent Materials

Yang Xiaofeng;  Dong xiangting**;   Wang Jinxian;   Liu Guixia   

  1. (School of Chemistry and Enviromental Engineering, Changchun University of Science and
     Technology, Changchun 130022, China)
  • Received: Revised: Online: Published:
  • Contact: Dong Xiangting E-mail:dongxiangting888@yahoo.com.cn
PDF ( 3749 ) Cited
Export

EndNote

Ris

BibTeX

Inorganic nanosized rare earth luminescent materials as the important luminescent materials owing to their unique electronic, optical and chemical properties, have been widely exploited for use in high-performance magnets, luminescence devices, displays, biolabeling, optical imaging, phototherapy and so on. The intrinsic properties of rare earth luminescent materials depend strongly on the materials’ size and shape. Recently many methods have been used for the preparation of rare earth luminescent nanostructures with different shapes, such as nanowires, nanorods, nanotubes, nanofibers and nanoplates, etc. In this paper, a comprehensive review is presented on the general preparation methods of inorganic nano rare earth luminescent materials, including hydrothermal and solvothermal method, organic/inorganic precursers thermal decomposition method, sonication-assisted technique, etc. The advantage and disadvantage of these preparation methods is discussed. Moreover, combining with our work on the preparation of inorganic nano rare earth luminescent materials, the development trends of the preparation methods of inorganic nano rare earth luminescent materials are also proposed.

Contents
1 Introduction
2 Preparation methods of rare earth luminescent materials
2.1 Hydrothermal and solvothermal methods
2.2 Organic/inorganic precursors thermal decomposition method
2.3 Sonication-assisted technique
2.4 Other preparation methods
3 Conclusions and prospects

CLC Number: 

[ 1 ]  Park S J , Taton T A , Mirkin C A. Science , 2002 , 295 : 1503 —1506
[ 2 ]  Bell A T. Science , 2003 , 299 : 1688 —1691
[ 3 ]  Huang M H , Mao S , Feick H , et al . Science , 2001 , 292 : 1897 —1899
[ 4 ]  Law M, Kind H , Messer B , et al . Angew. Chem. Int . Ed. , 2002 ,114 : 2511 —2514
[ 5 ]  Law M, Kind H , Messer B , et al . Angew. Chem. Int . Ed. , 2002 ,41 : 2405 —2408
[ 6 ]  Wang X, Li Y D. Angew. Chem. Int . Ed. , 2002 , 41 : 4790 —4793
[ 7 ]  Wang X, Sun X M, Li Y D , et al . Adv. Mater. , 2003 , 15 :1442 —1445
[ 8 ]  Wang X, Li Y D. Angew. Chem. Int . Ed. , 2003 , 42 : 3497 —3500
[ 9 ]  Wang X, Li YD. Chem. Eur. J . , 2003 , 9 : 5627 —5635
[10 ]  Hu C G, Liu H , Wang ZL , et al . Adv. Mater. , 2007 , 19 : 470 —474
[11 ]  Zhang YW, Yan Z G, You L P , et al . Eur. J . Inorg. Chem. ,2003 , 4099 —4104
[12 ]  Fang Y P , Xu A W, Song R Q , et al . J . Am. Chem. Soc. , 2003 ,125 : 16025 —16034
[13 ]  Yan Z G, Zhang YW, You L P , et al . Journal of Crystal Growth ,2004 , 262 : 408 —414
[14 ]  Yan Z G, Zhang YW, You L P , et al . Solid State Communications ,2004 , 130 : 125 —129
[15 ]  Yan R X, Sun X M, Li Y D , et al . Chem. Eur. J . , 2005 , 11 :2183 —2195
[16 ]  Wu X C , Tao Y R , Song C Y, et al . J . Phys. Chem. B , 2006 ,110 : 15791 —15796
[17 ]  Fan W L , Bu Y X, Song X Y, et al . Crystal Growth & Design ,2007 , 7 : 2361 —2366
[18 ]  Zhang J , Liu Z G, Lin J , et al . Crystal Growth &Design , 2005 , 5 :1527 —1530
[19 ]  Li X, Li Q , Xia Z G, et al . Crystal Growth & Design , 2006 , 6 :2193 —2196
[20 ]  Bai X, Song H W, Yu L X, et al . J . Phys. Chem. B , 2005 , 109 :15236 —15242
[21 ]  Zeng S Y, Tang K B , Li T W, et al . J . Colloid Interface Sci . ,2007 , 316 : 921 —929
[22 ]  Wang M, Huang Q L , Zhong H X, et al . Crystal Growth &Design ,2007 , 7 : 2106 —2111
[23 ]  Riwotzki K, Haase M. J . Phys. Chem. B , 1998 , 102 : 10129 —10135
[24 ]  Yu L X, Song H W, Liu Z X, et al . J . Phys. Chem. B , 2005 ,109 : 11450 —11455
[25 ]  Yu L X, Song HW, Lu S Z, et al . J . Phys. Chem. B , 2004 , 108 :16697 —16702
[26 ]  Meyssamy H , Riwotzki K, Kornowski A , et al . Adv. Mater. , 1999 ,11 : 840 —844
[27 ]  Fan WL , Song X Y, Bu Y X, et al . J . Phys. Chem. B , 2006 ,110 : 23247 —23254
[28 ]  Wang Y H , Wu C F , Wei J . J . Lumin. , 2007 , 126 : 503 —507
[29 ]  Wu C F , Wang Y H. Mater. Lett . , 2007 , 61 : 2416 —2418
[30 ]  Meng J X, ZhangM F , Liu YL , et al . Spectrochimica Acta Part A ,2007 , 66 : 81 —85
[31 ]  Zhang Y J , Guan H M. Journal of Crystal Growth , 2003 , 256 :156 —161
[32 ]  Guan H M, Zhang YJ . J . Solid State Chemistry , 2004 , 177 : 781 —785
[33 ]  Mao Y B , Huang J Y, Ostroumov R , et al . J . Phys. Chem. C ,2008 , 112 : 2278 —2285
[34 ]  Di W H , Zhao X X, Lu S Z, et al . J . Solid State Chemistry , 2007 ,180 : 2478 —2484
[35 ]  Wang J S , Bo S H , Song L M, et al . Nanotechnology , 2007 , 18 :465606 —465611
[36 ]  Nunez N O , Ocana M. Nanotechnology , 2007 , 18 : 455606 —455612
[37 ]  Yan L , Yu R B , Chen J , et al . Crystal Growth &Design , 2008 , 8 :1474 —1477
[38 ]  Cheng Y, Wang YS , Zheng Y H , et al . J . Phys. Chem. B , 2005 ,109 : 11548 —11551
[39 ]  Yang J , Li C X, Cheng Z Y, et al . J . Phys. Chem. C , 2007 , 111 :18148 —18154
[40 ]  Yang J , Quan Z W, Lin J , et al . Crystal Growth &Design , 2007 ,7 : 730 —735
[41 ]  Wang X, Zhuang J , Li Y D , et al . Inorg. Chem. , 2006 , 45 :6661 —6665
[42 ]  Huo Z Y, Chen C , Li Y D , et al . Chem. Eur. J . , 2007 , 13 :7708 —7714
[43 ]  Zeng J H , Li Z H , Su J , et al . Nanotechnology , 2006 , 17 : 3549 —3555
[44 ]  Huo Z Y, Chen C , Li YD. Chem. Commun. , 2006 , 3522 —3524
[45 ]  Wang L Y, Li YD. Chem. Mater. , 2007 , 19 : 727 —734
[46 ]  Yang S W, Gao L. J . Am. Chem. Soc. , 2006 , 128 : 9330 —9331
[47 ]  Li C X, Yang J , Yang P P , et al . Chem. Mater. , 2008 , 20 :4317 —4326
[48 ]  Sun Y J , Liu H J , Wang X, et al . Chem. Mater. , 2006 , 18 :2726 —2732
[49 ]  Li C X, Yang J , Quan Z W, et al . Chem. Mater. , 2007 , 19 :4933 —4942
[50 ]  Li C X, Quan Z W, Yang J , et al . Inorg. Chem. , 2007 , 46 :6329 —6337
[51 ]  Tang B , Ge J C , Zhuo L H. Nanotechnology , 2004 , 15 : 1749 —1751
[52 ]  Tao F , Wang ZJ , Yao L Z, et al . Crystal Growth &Design , 2007 ,7 : 854 —858
[53 ]  Tao F , Wang ZJ , Yao L Z, et al . J . Phys. Chem. C , 2007 , 111 :3241 —3245
[54 ]  Zhang M F , Fan H , Qian Y T, et al . J . Phys. Chem. C , 2007 ,111 : 6652 —6657
[55 ]  Liang X, Wang X, WangL Y, et al . Eur. J . Inorg. Chem. , 2006 ,2186 —2191
[56 ]  Liang L F , Xu H F , Su Q , et al . Inorg. Chem. , 2004 , 43 : 1594 —1596
[57 ]  Zhuang J L , Liang L F , Sung H H Y, et al . Inorg. Chem. , 2007 ,46 : 5404 —5410
[58 ]  Jia CJ , Sun L D , You L P , et al . J . Phys. Chem. B , 2005 , 109 :3284 —3290
[59 ]  Wang N , Chen W, Zhang Q F , et al . Mater. Lett . , 2008 , 62 :109 —112
[60 ]  Zeng J H , Li Z H , Su J , et al . Nanotechnology , 2006 , 17 : 3549 —3555
[61 ]  Luo F , Jia CJ , Song W, et al . Crystal Growth &Design , 2005 , 5 :137 —142
[62 ]  Liang X, Wang X, Li Y D , et al . Inorg. Chem. , 2007 , 46 :6050 —6055
[63 ]  Bu WB , Zhang L X, Hua Z L , et al . Crystal Growth & Design ,2007 , 7 : 2305 —2309
[64 ]  Kaneko K, Inoke K, Freitag B , et al . Nano Lett . , 2007 , 7 : 421 —425
[65 ]  Wang F , Xue XJ , Liu X G. Angew. Chem. Int . Ed. , 2007 , 46 :1 —5
[66 ]  Tang Q , Liu Z P , Li S , et al . Journal of Crystal Growth , 2003 ,259 : 208 —214
[67 ]  Chen L M, Liu Y N , Huang KL. Mater. Res. Bull . , 2006 , 41 :158 —166
[68 ]  Guan M Y, Sun J H , Han M, et al . Nanotechnology , 2007 , 18 :415602 —415607
[69 ]  Zhang Y X, Guo J , White T, et al . J . Phys. Chem. C , 2007 ,111 : 7893 —7897
[70 ]  Si R , Zhang Y W, Yan C H , et al . Chem. Mater. , 2007 , 19 :18 —27
[71 ]  Si R , Zhang Y W, Yan C H , et al . Angew. Chem. Int . Ed. ,2005 , 44 : 3256 —3260
[72 ]  Sun X, Zhang Y W, Yan C H , et al . Chem. Eur. J . , 2007 , 13 :2320 —2332
[73 ]  Du Y P , Zhang Y W, Yan C H , et al . J . Phys. Chem. C , 2008 ,112 : 405 —415
[74 ]  Zhang Y W, Sun X, Yan C H , et al . J . Am. Chem. Soc. , 2005 ,127 : 3260 —3261
[75 ]  Boyer J C , Vetrone F , Cuccia L A , et al . J . Am. Chem. Soc. ,2006 , 128 : 7444 —7445
[76 ]  Mai H X, Zhang Y W, Yan C H , et al . J . Phys. Chem. C , 2007 ,111 : 13730 —13739
[77 ]  Mai H X, Zhang Y W, Yan C H , et al . J . Am. Chem. Soc. ,2006 , 128 : 6426 —6436
[78 ]  Shan J N , Qin X, Yao N , et al . Nanotechnology , 2007 , 18 :445607 —445613
[79 ]  Zhao F , Yuan M, Gao S , et al . J . Am. Chem. Soc. , 2006 , 128 :11758 —11759
[80 ]  Han M, Shi N E , Zhang W L , et al . Chem. Eur. J . , 2008 , 14 :1615 —1620
[81 ]  Wang Z L , Quan Z W, Lin J . Inorg. Chem. , 2007 , 46 : 5237 —5242
[82 ]  Wei Y, Lu F Q , Zhang X R , et al . Chem. Mater. , 2006 , 18 :5733 —5737
[83 ]  Liu C H , Sun J , Wang H , et al . Scripta Materialia , 2008 , 58 :89 —92
[84 ]  Riwotzki K, Meyssamy H , Haase M, et al . J . Phys. Chem. B ,2000 , 104 : 2824 —2828
[85 ]  Riwotzki K, Meyssamy H , Haase M, et al . Angew. Chem. Int .Ed. , 2001 , 40 : 573 —576
[86 ]  Lehmann O , Kompe K, Haase M. J . Am. Chem. Soc. , 2004 ,126 : 14935 —14942
[87 ]  Heer S , Lehmann O , Haase M, et al . Angew. Chem. Int . Ed. ,2003 , 42 : 3179 —3182
[88 ]  Meiser F , Cortez C , Caruso F. Angew. Chem. Int . Ed. , 2004 ,43 : 5954 —5957
[89 ]  Mai H X, Zhang Y W, Yan C H , et al . Chem. Mater. , 2007 , 19 :4514 —4522
[90 ]  Zhang D S , Fu H X, Shi L Y, et al . Inorg. Chem. , 2007 , 46 :2446 —2451
[91 ]  Zhu L , Liu X M, Meng J , et al . Cryst . Growth &Des. , 2007 , 7 :2505 —2511
[92 ]  Zhu L , Li Q , Liu X D , et al . J . Phys. Chem. C , 2007 , 111 :5898 —5903
[93 ]  Zhu L , Li J Y, Li Q , et al . Nanotechnology , 2007 , 18 : 055604 —055608
[94 ]  Li Y H , Hong G Y. J . Solid State Chemistry , 2005 , 178 : 645 —649
[95 ]  Lai H , Bao A , Yang Y, et al . J . Lumin. , 2008 , 128 : 521 —524
[96 ]  Wang M, Huang Q L , Hong J M, et al . Mater. Lett . , 2007 , 61 :1960 —1963
[97 ]  Wang M, Huang Q L , Hong J M, et al . Crystal Growth &Design ,2006 , 6 : 2169 —2173
[98 ]  Wang M, Huang Q L , Hong J M, et al . Crystal Growth &Design ,2006 , 6 : 1972 —1974
[99 ]  Xiu ZL , Yang Z S , Lu M K, et al . Optical Materials , 2006 , 29 :431 —434
[100 ] Lemyre J L , Ritcey A M. Chem. Mater. , 2005 , 17 : 3040 —3043
[101 ] Xing Y, Li M, Davis S A , et al . J . Phys. Chem. B , 2006 , 110 :1111 —1113
[102 ] Gu F B , Guo G S , Wang Z H , et al . Colloids and Surfaces A:Physicochem. Eng. Aspects , 2006 , 280 : 103 —107
[103 ] Fisher M J , Wang W, Dorhout P K, et al . J . Phys. Chem. C ,2008 , 112 : 1901 —1907
[104 ] Wei Y, Lu F Q , Zhang X R , et al . Mater. Lett . , 2007 , 61 :1337 —1340
[105 ] Wang Z Y, Zhao Z B , Qiu J S. Chem. Mater. , 2007 , 19 : 3364 —3366
[106 ] Ma L , Chen W X, Xu Z D. Mater. Lett . , 2008 , 62 : 2596 —2599
[107 ] Fan W L , Song X Y, Sun S X, et al . J . Solid State Chemistry ,2007 , 180 : 284 —290
[108 ] Yan R X, Li YD. Adv. Funct . Mater. , 2005 , 15 : 763 —770

[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[3] Shunxin Gu, Qin Jiang, Pengfei Shi. Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2022, 34(9): 1957-1971.
[4] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[5] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[6] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[7] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[8] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[9] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[10] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[11] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[12] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[13] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[14] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[15] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.