中文
Announcement
More
Progress in Chemistry 2009, Vol. 21 Issue (6): 1154-1163 Previous Articles   Next Articles

• Review •

Experimental and Theoretical Study of Molecular Rectification

Liu Hongmei |Zhao Jianwei**   

  1. (Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210008, China)
  • Received: Revised: Online: Published:
  • Contact: Zhao Jianwei E-mail:zhaojw@nju.edu.cn
PDF ( 2144 ) Cited
Export

EndNote

Ris

BibTeX

The field of molecular electronics was initiated in 1970s, when Aviram and Ratner proposed a concept for a molecular rectifier based on a single organic molecule. The molecular rectification has received great progress in the latest 30 years, both in experimental measurement and theoretical simulation. In this paper, we review the recent investigation on molecular rectification, both of molecular structures and rectification mechanisms. Several rectification mechanisms have been summarized, such as D-σ-A, D-π-A and D-A types, rectification induced by conformation reverse and interface. The negative differential resistance is also addressed, which is induced by charging, conformational flexibility, intermolecular charge transfer, molecular double dot, and the polaron mechanism. Finally, the problems and challenges in the study of molecular rectification are proposed.

Contents
1 Introduction
2 Experimental measurements
3 Mechanisms of molecular rectification
3.1 D-σ-A type of molecular rectification
3.2 D-π-A type of molecular rectification
3.3 D-A type of molecular rectification
3.4 Molecular rectification induced by conformation reverse
3.5 Molecular Rectification induced by interface
3.6 Negative differential resistance
4 Conclusion and prospective

CLC Number: 

[ 1 ]  Aviram A , Ratner M A. Chem. Phys. Lett . , 1974 , 29 : 277 —283
[ 2 ]  Ashwell G J , Sambles J R , Martin A S , et al . J . Chem. Soc.Chem. Commun. , 1990 , 19 : 1374 —1376
[ 3 ]  Martin A S , Sambles J R , Ashwell GJ . Phys. Rev. Lett . , 1993 ,70 : 218 —221
[ 4 ]  Ashwell GJ , Tyrrell WD , Whittam A J . J . Mater. Chem. , 2003 ,13 : 2855 —2857
[ 5 ]  Ng M K, Lee D C , Yu L P. J . Am. Chem. Soc. , 2002 , 124 :11862 —11863
[ 6 ]  Jiang P , Morales GM, Yu L P , et al . Angew. Chem. Int . Ed. ,2004 , 43 : 4471 —4475
[ 7 ]  Morales GM, Jiang P , Yu L P , et al . J . Am. Chem. Soc. , 2005 ,127 : 10456 —10457
[ 8 ]  Liang Y Y, Wang H B , Yu L P , et al . J . Mater. Chem. , 2007 ,17 : 2183 —2194
[ 9 ]  Weibel N , Grunder S , Mayor M. Org. Biomol . Chem. , 2007 , 5 :2343 —2353
[10 ]  Wu G, Li B. Phys. Rev. B , 2007 , 76 : art . no. 085424
[11 ]  Metzger R M, Baldwin J W, Shumate WJ , et al . J . Phys. Chem.B , 2003 , 107 : 1021 —1027
[12 ]  Honciuc A , Jaiswal A , Gong A , et al . J . Phys. Chem. B , 2005 ,109 : 857 —871
[13 ]  Shumate WJ , Mattern D L , Jaiswal A , et al . J . Phys. Chem. B ,2006 , 110 : 11146 —11159
[14 ]  Wold D J , Haag R , Rampi MA , et al . J . Phys. Chem. B , 2002 ,106 : 2813 —2816
[15 ]  Metzger R M. Chem. Rev. , 2003 , 103 : 3803 —3834
[16 ]  Datta S. Electronic Transport in Mesoscopic Systems. New York :Cambridge University Press , 1996
[17 ]  Troisi A , Ratner M A. Phys. Rev. B , 2005 , 72 : art . no. 033408
[18 ]  Taylor J , Guo H , Wang J . Phys. Rev. B , 2001 , 63 : art . no.245407
[19 ]  Stokbro K, Taylor J , Brandbyge M. J . Am. Chem. Soc. , 2003 ,125 : 3674 —3675
[20 ]  Staykov A , Nozaki D , Yoshizawa K. J . Phys. Chem. C , 2007 ,111 : 11699 —11705
[21 ]  Li Z Y, Kosov D S. J . Phys. Chem. B , 2006 , 110 : 9893 —9898
[22 ]  Li Z Y, Kosov D S. J . Phys. Chem. B , 2006 , 110 : 19116 —19120
[23 ]  Yin X, Liu HM, Zhao J W. J . Chem. Phys. , 2006 , 125 : art . no.094711
[24 ]  Yin X, Li YW, Zhang Y, et al . Chem. Phys. Lett . , 2006 , 422 :111 —116
[25 ]  Liu H M, Zhao J W, Yin X, et al . J . Chem. Phys. , 2008 : 129 :art . no. 224704
[26 ]  Blodgett KB. J . Am. Chem. Soc. , 1935 , 57 : 1007 —1022
[27 ]  Polymeropoulos E E , Mêbius D , Kuhn H. Thin Solid Films , 1980 ,68 : 173 —190
[28 ]  Fujihira M, Nishiyama K, Yamada H. Thin Solid Films , 1985 , 132 :77 —82
[29 ]  Metzger R M. Synthetic Met . , 2003 , 137 : 1499 —1501
[30 ]  Metzger R M. Anal . Chim. Acta , 2006 , 568 : 146 —155
[31 ]  Ulman A. Chem. Rev. , 1996 , 96 : 1533 —1544
[32 ]  Zhao J , Zeng C G, Yang J L , et al . Phys. Rev. Lett . , 2005 , 95 :art . no. 045502
[33 ]  Mann B , Kuhn H. J . Appl . Phys. , 1971 , 42 : 4398 —4405
[34 ]  Wu D G, Ghabboun J , Cahen D , et al . J . Phys. Chem. B , 2001 ,105 : 12011 —12018
[35 ]  Holmlin R E , Ismagilov R F , Haag R , et al . Angew. Chem. Int .Ed. , 2001 , 40 : 2316 —2320
[36 ]  Wang B , Zhou Y S , Ding X L , et al . J . Phys. Chem. B , 2006 ,110 : 24505 —24512
[37 ]  Zhao J W, Davis J J , Sansom M S P , et al . J . Am. Chem. Soc. ,2004 , 126 : 5601 —5609
[38 ]  Zhao J , Uosaki K. J . Phys. Chem. B , 2004 , 108 : 17129 —17135
[39 ]  Zhao J W, Davis J J . Nanotechnology , 2003 , 14 : 1023 —1028
[40 ]  Jiao L Y, Xian X J , Liu Z F , et al . J . Phys. Chem. C , 2008 ,112 : 7544 —7546
[41 ]  Haiss W, Nichols R J , van Zalinge H , et al . Phys. Chem. Phys.Chem. , 2004 , 6 : 4330 —4337
[42 ]  Xu B Q , Xiao X Y, Tao N J . J . Am. Chem. Soc. , 2003 , 125 :16164 —16165
[43 ]  Elbing M, Ochs R , Koentopp M, et al . P. Natl . Acad. Sci . USA ,2005 , 102 : 8815 —8820
[44 ]  Metzger R M, Chen B , Hêpfner U , et al . J . Am. Chem. Soc. ,1997 , 119 : 10455 —10466
[45 ]  Chen B , Metzger R M. J . Phys. Chem. B , 1999 , 103 : 4447 —4451
[46 ]  Metzger R M, Xu T, Peterson I R. J . Phys. Chem. B , 2001 , 105 :7280 —7290
[47 ]  Jaiswal A , Amaresh R R , Metzger R M, et al . Langmuir , 2003 ,19 : 9043 —9050
[48 ]  NgM K, Yu L P. Angew. Chem. Int . Ed. , 2002 , 41 : 3598 —3601
[49 ]  Oleynik I I , Kozhushner M A , Yu L P , et al . Phys. Rev. Lett . ,2006 , 96 : art . no. 096803
[50 ]  Mukherjee B , Pal A J . Chem. Phys. Lett . , 2005 , 416 : 289 —292
[51 ]  Mukherjee B , Mohanta K, Pal A J . Chem. Mater. , 2006 , 18 :3302 —3307
[52 ]  Ellenbogen J C , Love J C. Proc. IEEE , 2000 , 88 : 386 —426
[53 ]  Nishino T, Ito T, Umezawa Y. Proceed. Natl . Acad. Sci . USA ,2005 , 102 : 5659 —5662
[54 ]  Esfarjani K, Farajian A A , Hashi Y, et al . Appl . Phys. Lett . ,1999 , 74 : 79 —81
[55 ]  Troisi A , Ratner M A. J . Am. Chem. Soc. , 2002 , 124 : 14528 —14529
[56 ]  Troisi A , Ratner M A. Nano Lett . , 2004 , 4 : 591 —595
[57 ]  Ashwell GJ , Gandolfo D S. J . Mater. Chem. , 2002 , 12 : 411 —415
[58 ]  Yasuda S , Nakamura T, Matsumoto M, et al . J . Am. Chem. Soc. ,2003 , 125 : 16430 —16433
[59 ]  Chang S C , Li Z Y, Lau C N , et al . Appl . Phys. Lett . , 2003 , 83 :3198 —3200
[60 ]  Zhao J W, Davis J J . Colloid Surf . B-Biointerfaces , 2005 , 40 :189 —194
[61 ]  Taylor J , Brandbyge M, Stokbro K. Phys. Rev. Lett . , 2002 , 89 :art . no. 138301
[62 ]  Meir Y, Wingreen N S. Phys. Rev. Lett . , 1992 , 68 : 2512 —2515
[63 ]  Tivanski A V , He Y F , Borguet E , et al . J . Phys. Chem. B ,2005 , 109 : 5398 —5402
[64 ]  Zhao Y, Pérez-Segarra W, Shi Q , et al . J . Am. Chem. Soc. ,2005 , 127 : 7328 —7329
[65 ]  Wei Z, Kondratenko M, Dao L H , et al . J . Am. Chem. Soc. ,2006 , 128 : 3134 —3135
[66 ]  Chen J , Reed M A , Rawlett A M, et al . Science , 1999 , 286 :1550 —1552
[67 ]  Chen J , Reed M A. Chem. Phys. , 2002 , 281 : 127 —145
[68 ]  Seminario J M, Zacarias A G, Tour J M. J . Am. Chem. Soc. ,2000 , 122 : 3015 —3020
[69 ]  Taylor J , Brandbyge M, Stokbro K. Phys. Rev. B , 2003 , 68 : art .no. 121101
[70 ]  Luo Y, Wang C K, Fu Y. J . Chem. Phys. , 2002 , 117 : 10283 —10290
[71 ]  Long MQ , Chen KQ , Wang L L , et al . Appl . Phys. Lett . , 2008 ,92 : art . no. 243303
[72 ]  Cornil J , Karzazi Y, Brédas J L. J . Am. Chem. Soc. , 2002 , 124 :3516 —3517
[73 ]  Karzazi Y, Cornil J , Brédas J L. Nanotechnology , 2003 , 14 : 165 —171
[74 ]  Di Ventra M, Kim S G, Pantelides S T, et al . Phys. Rev. Lett . ,2001 , 86 : 288 —291
[75 ]  Bandyopadhyay A , Wakayama Y. Appl . Phys. Lett . , 2007 , 90 :art . no. 023512
[76 ]  Geng H , Hu Y, Shuai Z, et al . J . Phys. Chem. C , 2007 , 111 :19098 —19102
[77 ]  Liu R , Ke S H , Baranger H U , et al . J . Am. Chem. Soc. , 2006 ,128 : 6274 —6275
[78 ]  Galperin M, Ratner M A , Nitzan A. Nano Lett . , 2005 , 5 : 125 —130
[79 ]  Souza A S , Sumpter B G, Meunier V , et al . J . Phys. Chem. C ,2008 , 112 : 12008 —12011
[80 ]  Rao J L. Cent . Eur. J . Chem. , 2007 , 5 : 793 —812
[81 ]  Stadler R , Geskin V , Cornil J . Adv. Funct . Mater. , 2008 , 18 :1 —12

[1] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[2] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[3] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[4] Xiangrui Kong, Jing Dou, Shuzhen Chen, Bingbing Wang, Zhijun Wu. Progress of Synchrotron-Based Research on Atmospheric Science [J]. Progress in Chemistry, 2022, 34(4): 963-972.
[5] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[6] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[7] Congyuan Zhao, Jing Zhang, Zheng Chen, Jian Li, Lielin Shu, Xiaoliang Ji. Effective Constructions of Electro-Active Bacteria-Derived Bioelectrocatalysis Systems and Their Applications in Promoting Extracellular Electron Transfer Process [J]. Progress in Chemistry, 2022, 34(2): 397-410.
[8] Gang Lin, Yuanyuan Zhang, Jian Liu. Bioinspired Photo/(Electro)-Catalytic NADH Regeneration [J]. Progress in Chemistry, 2022, 34(11): 2351-2360.
[9] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[10] Jia Liu, Jun Shi, Kun Fu, Chao Ding, Sicheng Gong, Huiping Deng. Heterogeneous Catalytic Persulfate Oxidation of Organic Pollutants in the Aquatic Environment: Nonradical Mechanism [J]. Progress in Chemistry, 2021, 33(8): 1311-1322.
[11] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[12] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[13] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[14] Yong Feng, Yu Li, Guangguo Ying. Micro-Interface Electron Transfer Oxidation Based on Persulfate Activation [J]. Progress in Chemistry, 2021, 33(11): 2138-2149.
[15] Shumin Cheng, Lin Du, Xiuhui Zhang, Maofa Ge. Application of Langmuir Monolayers in the Investigation of Surface Properties of Sea Spray Aerosols [J]. Progress in Chemistry, 2021, 33(10): 1721-1730.