中文
Announcement
More
Progress in Chemistry 2009, Vol. 21 Issue (6): 1149-1153 Previous Articles   Next Articles

• Review •

Understanding the Microscopic Structure of the Electrochemically Active Group from Surface Electrochemistry

Guo Yan1; |Ni Wenbin2; |Zhao Jianwei2**   

  1. (1.College of Environmental Science and Engineering, Nanjing University of Information Science &|Technology, Nanjing 210044, China|2.Key laboratory of Analytical Chemistry for Life Science, Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210008, China)
  • Received: Revised: Online: Published:
  • Contact: Zhao Jianwei E-mail:zhaojw@nju.edu.cn
PDF ( 1619 ) Cited
Export

EndNote

Ris

BibTeX

Understanding structure changes of the electrochemically active species from molecular level can directly promote our knowledge of electrochemistry, molecular/nano electronics, electron transfer in life processes. Surface electrochemistry is a classical experimental method, and from these macroscopic results one can know some information about the molecular structure and the microscopic environment of electrochemically active species. Hence, the transfer coefficient, the apparent number of electron transferred and the reorganization energy are surveyed in this review. The transfer coefficient is directly correlated to the interaction between molecules. The apparent number of electron transferred gives insight into the different connection modes of the subunits in the biomacromolecule. In addition, the reorganization energy can provide information about how the microscopic environment around the electro-active group changes. This paper aims at bringing the value of macroscopic experiment method to molecular electrochmeistry.

Contents
1 Introduction
2 Transfer coefficient and the potential energy surface
3 Correlation between the apparent number of electron transferred and subunits
4 Changes of the microscopic environment reflected by reorganization energy
5 Conclusions

CLC Number: 

[ 1 ]  Zhao J W, Uosaki K. Langmuir , 2001 , 17 : 7784 —7788
[ 2 ]  Zhao J W, Uosaki K. Nano Lett . , 2002 , 2 : 137 —140
[ 3 ]  Zhao J W, Uosaki K. Appl . Phys. Lett . , 2003 , 83 : 2034 —2036
[ 4 ]  Zhao J W, Davis J J , Sansom M S P , et al . J . Am. Chem. Soc. ,2004 , 126 : 5601 —5609
[ 5 ]  赵健伟(Zhao J W) , 于化忠(Yu H Z) , 王永强(Wang Y Q) 等.物理化学学报(Acta Phys. Chim. Sin. ) , 1996 , 12 (7) : 581 —588
[ 6 ]  赵健伟(Zhao J W) , 于化忠(Yu H Z) , 王永强(Wang Y Q) 等.物理化学学报(Acta Phys. Chim. Sin. ) , 1997 , 13 (1) : 42 —47
[ 7 ]  赵健伟(Zhao J W) , 董绍俊(Dong SJ ) , 刘忠范(Liu Z F) . 分析化学(Chinese J . Anal . Chem. ) , 2000 , 28 (6) : 661 —665
[ 8 ]  周密(Zhou M) , 朱俊杰(Zhu J J ) , 赵健伟(Zhao J W) . 无机化学学报(Chinese J . Inorg. Chem. ) , 2007 , 27 (1) : 46 —50
[ 9 ]  Bockris J OM, Khan S UM. Quantum Electrochemistry. New York :Plenum Press , 1979
[10 ]  Laviron E. J . Electroanal . Chem. , 1974 , 52 : 395 —402
[11 ]  Wang Y Q , Yu H Z, Cheng J Z, et al . Langmuir , 1996 , 12 :5466 —5471
[12 ]  Rusling J F. Acc. Chem. Res. , 1998 , 31 : 363 —369
[13 ]  Lu Z Q , Huang Q D , Rusling J F. J . Electroanal . Chem. , 1997 ,423 : 59 —66
[14 ]  Nassar A E F , Willis W S , Rusling J F. Anal . Chem. , 1995 , 67 :2386 —2392
[15 ]  Rusling J F , Nassar A E F. J . Am. Chem. Soc. , 1993 , 115 :11891 —11897
[16 ]  高筱玲(Gao XL) , 郭彦(Guo Y) , 田燕妮(Tian Y N) 等. 物理化学学报(Acta Phys. Chim. Sin. ) , 2007 , 23 (8) : 1178 —1182
[17 ]  Marcus R A. J . Chem. Phys. , 1956 , 24 : 966 —978
[18 ]  Marcus R A. J . Chem. Phys. , 1965 , 43 : 679 —701
[19 ]  吴辉煌(Wu H H) . 电化学( Electrochemistry) . 北京: 化学工业出版社(Beijing: Chemical Industry Press) , 2004
[20 ]  Weber K, Creager S E. Anal . Chem. , 1994 , 66 : 3164 —3172
[21 ]  Chidsey C E D. Science , 1991 , 251 : 919 —922
[22 ]  Ju H , Leech D. Phys. Chem. Chem. Phys. , 1999 , 1 : 1549 —1554
[23 ]  Guo Y, Zhao J W, Zhu J . Thin Solid Films , 2007 , 516 : 3051 —3057
[24 ]  Slowinski K, Slowinska K U , Majda M. J . Phys. Chem. , 1999 ,103 : 8544 —8551
[25 ]  Sek S , Misicka A , Bilewicz R. J . Am. Chem. Soc. , 2000 , 104 :5399 —5402
[26 ]  Peng Z, Dong S. Langmuir , 2001 , 17 : 4904 —4909
[27 ]  Peng Z, Tang J , Han X, et al . Langmuir , 2002 , 18 : 4834 —4839
[28 ]  Guo Y, Zhao J W, Yin X, et al . J . Phys. Chem. C , 2008 , 112 :6013 —6021
[29 ]  Fedurco M, Augustynski J , Indiani C , et al . J . Am. Chem. Soc. ,2005 , 127 : 7638 —7646
[30 ]  Cascella M, Magistrato A , Tavernelli I , et al . Proc. Nat . Acad.Sci . USA , 2006 , 103 : 19641 —19646
[31 ]  Ryde U , Olsson M H M. Int . J . Quantum Chem. , 2001 , 81 :335 —347
[32 ]  Olsson M HM, Ryde U , Roos B O. Protein Sci . , 1998 , 7 : 2659 —2668
[33 ]  Fraga E , Webb A , Loppnow G R. J . Phys. Chem. B , 1996 , 100 :3278 —3287
[34 ]  Muegge I , Qi P X, Wand A J , et al . J . Phys. Chem. B , 1997 ,101 : 825 —836

[1] Congyuan Zhao, Jing Zhang, Zheng Chen, Jian Li, Lielin Shu, Xiaoliang Ji. Effective Constructions of Electro-Active Bacteria-Derived Bioelectrocatalysis Systems and Their Applications in Promoting Extracellular Electron Transfer Process [J]. Progress in Chemistry, 2022, 34(2): 397-410.
[2] Gang Lin, Yuanyuan Zhang, Jian Liu. Bioinspired Photo/(Electro)-Catalytic NADH Regeneration [J]. Progress in Chemistry, 2022, 34(11): 2351-2360.
[3] Jia Liu, Jun Shi, Kun Fu, Chao Ding, Sicheng Gong, Huiping Deng. Heterogeneous Catalytic Persulfate Oxidation of Organic Pollutants in the Aquatic Environment: Nonradical Mechanism [J]. Progress in Chemistry, 2021, 33(8): 1311-1322.
[4] Shuaibing Yu, Zhaolu Wang, Xuliang Pang, Lei Wang, Lianzhi Li, Yingwu Lin. Peptide-Based Metal Ion Sensors [J]. Progress in Chemistry, 2021, 33(3): 380-393.
[5] Yong Feng, Yu Li, Guangguo Ying. Micro-Interface Electron Transfer Oxidation Based on Persulfate Activation [J]. Progress in Chemistry, 2021, 33(11): 2138-2149.
[6] Xin Ni, Yang Zhou, Ruiqin Tan, Yongbo Kuang. Fabrication and Modification of Ferrite Photocathodes for Photoelectrochemical Water Splitting [J]. Progress in Chemistry, 2020, 32(10): 1515-1534.
[7] Lixiang Chen, Yidi Li, Xiaochun Tian, Feng Zhao. Electron Transfer in Gram-Positive Electroactive Bacteria and Its Application [J]. Progress in Chemistry, 2020, 32(10): 1557-1563.
[8] Xiaochun Tian, Xue'e Wu, Feng Zhao, Yanxia Jiang, Shigang Sun. Research on Mechanisms of Microbial Extracellular Electron Transfer by Electrochemical Integrated Technologies [J]. Progress in Chemistry, 2018, 30(8): 1222-1227.
[9] Shufen Fan, Jia Xin, Jingyi Huang, Weili Rong, Xilai Zheng. Effectiveness of Electron Transfer and Electron Competition Mechanism in Zero-Valent Iron-Based Reductive Groundwater Remediation Systems [J]. Progress in Chemistry, 2018, 30(7): 1035-1046.
[10] Shiying Yang, Tengfei Ren, Yixuan Zhang, Di Zheng, Jia Xin. ZVI/Oxidant Systems Applied in Water Environment and Their Electron Transfer Mechanisms [J]. Progress in Chemistry, 2017, 29(4): 388-399.
[11] Mingxue Liu, Faqin Dong, Xiaoqin Nie, Congcong Ding, Huichao He, Gang Yang. Reduction of Heavy Metal Ions Mediated by Photoelectron-Microorganism Synergistic Effect and Electron Transfer Mechanism [J]. Progress in Chemistry, 2017, 29(12): 1537-1550.
[12] Ma Jinlian, Ma Chen, Tang Jia, Zhou Shungui, Zhuang Li. Mechanisms and Applications of Electron Shuttle-Mediated Extracellular Electron Transfer [J]. Progress in Chemistry, 2015, 27(12): 1833-1840.
[13] Liu Lidan, Xiao Yong, Wu Yicheng, Chen Bilian, Zhao Feng. Electron Transfer Mediators in Microbial Electrochemical Systems [J]. Progress in Chemistry, 2014, 26(11): 1859-1866.
[14] Xiao Yong, Wu Song, Yang Zhaohui, Zheng Yue, Zhao Feng. Isolation and Identification of Electrochemically Active Microorganisms [J]. Progress in Chemistry, 2013, 25(10): 1771-1780.
[15] Song Yingpan, Feng Miao, Zhan Hongbing*. Application of Graphene Edge Effect in Electrochemical Biosensors [J]. Progress in Chemistry, 2013, 25(05): 698-706.