中文
Announcement
More
Progress in Chemistry 2009, Vol. 21 Issue (12): 2642-2650 Previous Articles   Next Articles

• Review •

Nanoparticle-Coated Temperature-Responsive Copolymer

Wu Qingbin;   Ren Nan;   Zhang Yahong;  Tang Yi**   

  1. (Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China)
  • Received: Revised: Online: Published:
  • Contact: Tang Yi E-mail:yitang@fudan.edu.cn
  • Supported by:

    National Natural Science Foundation of China

PDF ( 1335 ) Cited
Export

EndNote

Ris

BibTeX

In this review, based on the different kinds of branched side groups in polymer chains, the properties of three types of the temperature-responsive polymers, including poly-isopropylacylamide, poly-vinyl ether and poly-vinylpyridine, are introduced respectively. Being complexed with the inorganic nanoparticles, the organic-inorganic hybrid materials can also be obtained. The structure characters and temperature-responsive properties of these interesting materials are discussed in detail. Furthermore, the emerging applications of these composites, such as controllable phase-transfer catalysis are reviewed. The future developments of these composite materials are prospected as well.

Contents
1 Introduction
2 Brief introduction of nanoparticle-temperature responsive copolymer composite
2.1 Basic knowledge
2.2 Isopropylacylamide type copolymer
2.3 Vinylether type copolymer
2.4 Vinylpyridine type copolymer
3 Catalytic applications
4 Conclusion and outlook

CLC Number: 

[ 1 ]  Birringer R , Gleiter H , Marquardt P , et al . Phys. Lett . A , 1984 , 102A(8) : 365 —369
[ 2 ]  Shipway A N , Katz E , Willner I. ChemPhysChem , 2000 , 1 (1) : 18 —52
[ 3 ]  刘维平(Liu W P) , 邱定蕃(Qiu D F) , 卢惠民(Lu H M) . 化工矿物与加工( Industrial Minerals and Processing) , 2003 , 12 : 1 —5
[ 4 ]  Tang Z Y, Kotov N A. Adv. Mater. , 2005 , 17 (8) : 951 —962
[ 5 ]  Trindade T, O’Brien P , Pickett N L. Chem. Mater. , 2001 , 13 (11) : 3843 —3858
[ 6 ]  Haynes C L , van Duyne R P. J . Phys. Chem. B , 2001 , 105 (24) : 5599 —5611
[ 7 ]  Morais P C , da Silva S W, Buske N , et al . Biomol . Eng. , 2001 , 17 (2) : 41 —49
[ 8 ]  Duan H , Wang D , Mohwald H , et al . Nano Lett . , 2005 , 5 (5) : 949 —952
[ 9 ]  Glaspell G, Abdelsayed V , EI2Shall M S , et al . Pure Appl . Chem. , 2006 , 78 (9) : 1667 —1689
[10 ]  Crooks R M, Zhao M Q , Yeung L K, et al . Acc. Chem. Res. , 2001 , 34 (3) : 181 —190
[11 ]  Bell A T. Science , 2003 , 299 (5613) : 1688 —1691
[12 ]  Nath N , Chilkoti A. Anal . Chem. , 2002 , 74 (3) : 504 —509
[13 ]  Haes A J , Zou S L , van Duyne R P , et al . J . Phys. Chem. B , 2004 , 108 (1) : 109 —116
[14 ]  Hulteen J C , Treichel D A , van Duyne R P , et al . J . Phys. Chem. B , 1999 , 103 (19) : 3854 —3863
[15 ]  Cho Y H , Yang J E , Lee J S. Mat . Sci . Eng. C , 2004 , 24 (1P2) : 293 —295
[16 ]  宇海银(Yu H Y) , 孙益民(Sun YM) , 左光汉(Zuo G H) . 塑料科技(Plastics Science and Technology) , 2001 , 4 : 1 —3
[17 ]  Sitaula S , Mackiewicz M R , Reed S M. Chem. Commun. , 2008 , 26 : 3013 —3015
[18 ]  Koenig S , Chechik V. Langmuir , 2006 , 22 (11) : 5168 —5173
[19 ]  Gatsouli KD , Pispas S , Kamitsos E I. J . Phys. Chem. C , 2007 , 111 (42) : 15201 —15209
[20 ]  Yee C K, Jordan R , Sokolov J , et al . Langmuir , 1999 , 15 (10) : 3486 —3491
[21 ]  Kukhta A V , Kolesnik E E , Vorobyova S A , et al . Syn. React . Inorg. Met . , 2007 , 37 (5) : 333 —339
[22 ]  Iwakoshi A , Nanke T, Kobayashi T. Gold Bull . , 2005 , 38 (3) : 107 —112
[23 ]  Chiu J J , Perng T P. Nanotechnology , 2008 , 19 ( 28) : art . no. 285718
[24 ]  Sun H , Zhang J , Wang Z Y, et al . ChemPhysChem , 2006 , 7 : 2492 —2496
[25 ]  Godovsky D Y. BiopolymersPPVA HydrogelsPAnionic Polymerisation Nanocomposites , 2000 , 153 : 163 —205
[26 ]  Jiang C Y, Markutsya S , Tsukruk W, et al . Nat . Mater. , 2004 , 3 (10) : 721 —728
[27 ]  Grate J W, Nelson D A , Skaggs R. Anal . Chem. , 2003 , 75 (8) : 1868 —1879
[28 ]  Sakurai H , Tsunoyama H , Tsukuda T. J . Organomet . Chem. , 2007 , 692 : 368 —374
[29 ]  Tsunoyama H , Sakurai H , Tsukuda T. Chem. Phys. Lett . , 2006 , 429 : 528 —532
[30 ]  Tsunoyama H , Sakurai H , Tsukuda T, et al . J . Am. Chem. Soc. , 2005 , 127 (26) : 9374 —9375
[31 ]  Ishida T, Kuroda K, Haruta M, et al . J . Colloid Interf . Sci . , 2008 , 323 : 105 —111
[32 ]  Tsunoyama H , Tsukuda T, Sakurai H. Chem. Lett . , 2007 , 36 (2) : 212 —213
[33 ]  Forster S , Antonietti M. Adv. Mater. , 1998 , 10 (3) : 195 —217
[34 ]  Lo C T, Lee B , Thiyagarajan P , et al . Macromolecules , 2007 , 40 (3) : 641 —647
[35 ]  任现文(Ren X W) , 江明(Jiang M) . 高等学校化学学报(Chemical Journal of Chinese Universities) , 2006 , 27 (11) : 2204 — 2208
[36 ]  Thurmond KB , Kowalewski T, Wooley KL. J . Am. Chem. Soc. , 1997 , 119 (28) : 6656 —6665
[37 ]  Yusa S , Yamago S , Morishima Y, et al . Macromolecules , 2007 , 40 (16) : 5907 —5915
[38 ]  Guo J , Yang WL , Wang C , et al . Chem. Mater. , 2006 , 18 (23) : 5554 —5562
[39 ]  He J , Chen J Y, Peng Q , et al . Nanotechnology , 2007 , 18 (41) : art . no. 415101
[40 ]  Ballauff M, Lu Y. Polymer , 2007 , 48 (7) : 1815 —1823
[41 ]  Lu Y, Mei Y, Drechsler M, et al . J . Phys. Chem. B , 2006 , 110 (9) : 3930 —3937
[42 ]  Mei Y, Lu Y, Drechsler M, et al . Chem. Mater. , 2007 , 19 (5) : 1062 —1069
[43 ]  Lu Y, Mei Y, Ballauff M, et al . Angew. Chem. Int . Ed. , 2006 , 45 (5) : 813 —816
[44 ]  Li J , Hong X, Bai Y, et al . Adv. Mater. , 2005 , 17 (2) : 163 — 166
[45 ]  Peng Z A , Peng X. J . Am. Chem. Soc. , 2001 , 123 (7) : 1389 — 1395
[46 ]  Shibayama M, Fujikawa Y, Nomura S. Macromolecules , 1996 , 29 (20) : 6535 —6540
[47 ]  Tang T, Krysmann MJ , Hamley I W. Colloid. Surface , 2008 , 317 : 764 —767
[48 ]  Sugihara S , Kanaoka S , Aoshima S. Macromolecules , 2004 , 37 (5) : 1711 —1719
[49 ]  Kiremitci A S , Ciftci A , Gumuesderelioglu M, et al . J . Biomed. Mater. Res. B , 2007 , 83B(2) : 609 —614
[50 ]  Sugihara S , Kanaoka S , Aoshima S. J . Polym. Sci . Polym. Chem. , 2004 , 42 (11) : 2601 —2611
[51 ]  Confortini O , Du Prez F E. Macromol . Chem. Phys. , 2007 , 208 (17) : 1871 —1882
[52 ]  Lo C T, Lee B , Thiyagarajan P , et al . Macromolecules , 2007 , 40 (23) : 8302 —8310
[53 ]  Lo C T, Lee B , Thiyagarajan P , et al . Macromolecules , 2006 , 39 (19) : 6318 —6320
[54 ]  Zhao H , Douglas E P , Schanze K S , et al . Langmuir , 2001 , 17 (26) : 8428 —8433
[55 ]  Lee D H , Han S H , Huh J , et al . Macromolecules , 2008 , 41 (7) : 2577 —2583
[56 ]  Wang Y, Wei G W, Dong A J , et al . J . Mol . Catal . A2Chem. , 2007 , 266 (1P2) : 233 —238
[57 ]  Chen X, Zhao D Y, Shi L Q J , et al . Colloid Interf . Sci . , 2008 , 322 : 414 —420
[58 ]  Jiang C W, Xiong D A , Shi L Q , et al . J . Polym. Sci . Polym. Chem. , 2007 , 45 : 2812 —2819
[59 ]  Kanaoka S , Yagi N , Sakurai H , et al . J . Am. Chem. Soc. , 2007 , 129 (40) : 12060 —12061
[60 ]  Wang Y, Wei G, Shi L , et al . J . Mol . Catal . A2Chem. , 2008 , 280 : 1 —6

[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[7] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[8] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[9] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[10] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[11] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[12] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[13] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[14] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[15] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.