中文
Announcement
More
Progress in Chemistry 2009, Vol. 21 Issue (12): 2635-2641 Previous Articles   Next Articles

• Review •

Nitration of Deactivated Aromatic Compounds

Liu Jinqiang; Qian Chao; Chen Xinzhi**   

  1. (Institute of  Chemical Engineeing, Zhejiang University, Hangzhou 310027, China)
  • Received: Revised: Online: Published:
  • Contact: Chen Xinzhi E-mail:xzchen@zju.edu.cn
PDF ( 2900 ) Cited
Export

EndNote

Ris

BibTeX

The nitration of aromatics is an important reaction in chemical industry, and the nitration of deactivated aromatics plays a key role in the synthesis of medicines, pesticides, dyes and explosives. In this paper, the latest progress of the nitration of deactivated aromatic compounds is reviewed in the point of view of nitrating agents, including nitrate-sulfuric acid, nitrate ester, nitric acid and nitrogen oxides. Their specific features, merits and demerits are outlined and the perspectives of the nitration are prospected. Among them, nitrate-sulfuric acid system with higher nitrating activity can get high yields at mild condition in the nitration of deactivated aromatic compounds and could be used in the laboratory and industrial applications. And for other nitrating methods, the nitration of high degree deactivated aromatics is, so far, not satisfying for different reasons and more efforts are needed for developing new agents with higher nitrating activity.

 Contents
1 Introduction
2 Nitrate/sulfuric acid as nitration agent
2.1 Nitrate/sulfuric acid as nitration agent
2.2 Supported nitrate as nitration agent
3 Nitrate ester as nitration agent
3.1 Ethylene glycol dinitrate as nitration agent
3.2 Trifluoroacetyl nitrate as nitration agent
3.3 Nitration with acetyl nitrate catalyzed by ionic liquid
4 Nitric acid as nitration agent
4.1 Catalyzed by solid acid
4.2 Catalyzed by BrÖnsted acid ionic liquid
4.3 Catalyzed by Ln perfluorooctanesulfonate and perfluorooctanesulfonic acid
4.4 Catalyzed by Lewis acid
5 Nitrogen oxides as nitration agent
5.1 NO2/O2 as nitration agent
5.2 N2O5 as nitration agent
5.3 NO2/O3 as nitration agent
5.4 N2O4 as nitration agent
6 Conclusion

CLC Number: 

[ 1 ]  Rahaman M, Mandal B P , Ghosh P. AICHE J , 2007 , 53 ( 9) : 2476 —2480
[ 2 ]  Moodie R B , Payne M A , Schofield K. J . Chem. Soc. Perkin Trans. 2 , 1985 , (9) : 1457 —1464
[ 3 ]  Majumdar M P , Kudav N A. Indian J . Chem. Sec. B2Org. Chem. Inc. Med. Chem. , 1976 , 14 (12) : 1012 —1013
[ 4 ]  Sura T P , Ramana M, Kudav N A. Synth. Commun. , 1988 , 18 (16P17) : 2161 —2165
[ 5 ]  Mundla S R. Tetrahedron Lett . , 2000 , 41 (22) : 4277 —4279
[ 6 ]  Almog J , Klein A , Sokol A , et al . Tetrahedron Lett . , 2006 , 47 (49) : 8651 —8652
[ 7 ]  Ramana M, Malik S S , Parihar J A. Tetrahedron Lett . , 2004 , 45 (47) : 8681 —8683
[ 8 ]  Oxley J C , Smith J L , Moran J S , et al . Tetrahedron Lett . , 2008 , 49 (28) : 4449 —4451
[ 9 ]  Hajipour A R , Zarei A , Khazdooz L , et al . Synth. Commun. , 2005 , 35 (17) : 2237 —2241
[10 ]  Yadav J S , Meshram H M. Pure & Appl . Chem. , 2001 , 73 (1) : 199 —203
[11 ]  Meshram H M, Ganesh Y, Madhavi A V , et al . Synth. Commun. , 2003 , 33 (14) : 2497 —2503
[12 ]  Zolfigol M A , Mirjalili B F , Bamoniri A , et al . Bull . Kor. Chem. Soc. , 2004 , 25 (9) : 1414 —1416
[13 ]  Shokrolahi A , Zali A , Keshavarz M H. Chin. Chem. Lett . , 2007 , 18 (9) : 1064 —1066
[14 ]  Botvay A , Mathe A , Poppl L. Polymer , 1999 , 40 (17) : 4965 — 4970
[15 ]  Smith K, Gibbins T, Millar R W, et al . J . Chem. Soc. Perkin Trans. 1 , 2000 , (16) : 2753 —2758
[16 ]  吕春绪(Lv C X) , 彭新华( Peng X H) . 火炸药学报(Chinese Journal of Explosives & Propellants) , 2001 , (01) : 11 —12
[17 ]  Smith K, Liu S F , El2Hiti GA. Ind. & Eng. Chem. Res. , 2005 , 44 (23) : 8611 —8615
[18 ]  Dal E , Lancaster N L. Org. & Biomol . Chem. , 2005 , 3 ( 4) : 682 —686
[19 ]  Wang S , Sun Z, Nie J . Chin. J . Chem. , 2008 , 26 (12) : 2256 — 2260
[20 ]  Bharadwaj S K, Hussain S , Kar M, et al . Appl . Catal . A2Gen. , 2008 , 343 (1P2) : 62 —67
[21 ]  Hajipour A R , Ruoho A E. Tetrahedron Lett . , 2005 , 46 ( 48) : 8307 —8310
[22 ]  Olah G A , Orlinkov A , Oxyzoglou A B , et al . J . Org. Chem. , 1995 , 60 (22) : 7348 —7350
[23 ]  Olah GA , Orlinkov A V , Ramaiah P , et al . Russ. Chem. Bull . , 1998 , 47 (5) : 924 —927
[24 ]  Qiao K, Yokoyama C. Chem. Lett . , 2004 , 33 (7) : 808 —809
[25 ]  Fang D , Shi Q R , Cheng J , et al . Appl . Catal . A2Gen. , 2008 , 345 (2) : 158 —163
[26 ]  岳彩波(Yue C B) , 魏运洋(Wei Y Y) , 吕敏杰(Lv MJ ) . 含能材料(Chinese Journal of Energetic Materials) , 2007 , 15 (2) : 118 — 121 , 127
[27 ]  Yi WB , Cai C. Synth. Commun. , 2006 , 36 (20) : 2957 —2961
[28 ]  Yi WB , Cai C. J . Energetic Materials , 2007 , 25 (2) : 129 —139
[29 ]  方东(Fang D) , 施群荣(Shi Q R) , 巩凯(Gong K) 等. 含能材料 (Chinese Journal of Energetic Materials) , 2008 , 16 (1) : 103 —112
[30 ]  Frost C G, Hartley J P , Griffin D. Tetrahedron Lett . , 2002 , 43 (27) : 4789 —4791
[31 ]  Peng X H , Suzuki H , Lu C X. Tetrahedron Lett . , 2001 , 42 (26) : 4357 —4359
[32 ]  Peng X H , Suzuki H. Org. Lett . , 2001 , 3 (22) : 3431 —3434
[33 ]  Peng X H , Fukui N , Mizuta M, et al . Org. & Biomol . Chem. , 2003 , 1 (13) : 2326 —2335
[34 ]  Cho J K, Kim YT, Kim Y G, et al . Res. Chem. Intermed. , 2006 , 32 (8) : 759 —766
[35 ]  Bakke J M, Hegbom I. Acta Chimica Scandinavica , 1994 , 48 (2) : 181 —182
[36 ]  Bakke J M, Ranes E. J . Chem. Soc.2Perkin Trans. 2 , 1997 , (10) : 1919 —1923
[37 ]  蔡春(Cai C) , 吕春绪(Lv C X) . 火炸药学报(Chinese Journal of Explosives & Propellants) , 2000 , (1) : 25 —27
[38 ]  Bak R R , Smallridge A J . Tetrahedron Lett . , 2001 , 42 ( 38) : 6767 —6769
[39 ]  Hill A J , Millar R W, Sandall J . Org. Biomol . Chem. , 2004 , 2 (1) : 90 —92
[40 ]  Suzuki H , Kozai I , Murashima T. J . Chem. Res. (S) , 1993 , (4) : 156 —157
[41 ]  Suzuki H , Iwaya M, Mori T. Tetrahedron Lett . , 1997 , 38 (32) : 5647 —5650
[42 ]  Zolfigol M A , Ghaemi E , Madrakian E. Synlett , 2003 , (2) : 191 — 194
[43 ]  Iranpoor N , Firouzabadi H , Heydari R , et al . Synth. Commun. , 2005 , 35 (2) : 263 —270

[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[3] Xiaohan Wang, Caixia Liu, Chunfeng Song, Degang Ma, Zhenguo Li, Qingling Liu. Application of Metal-Organic Frameworks for Low-Temperature Selective Catalytic Reduction of NO with NH3 [J]. Progress in Chemistry, 2020, 32(12): 1917-1929.
[4] Fangting Gu, Min Hu*, Jing Zheng, Song Guo. Research Progress on Particulate Organonitrates [J]. Progress in Chemistry, 2017, 29(9): 962-969.
[5] Li Panpan, Yu Feng, Zhu Mingyuan, Tang Changjin, Dai Bin, Dong Lin. Selective Catalytic Reduction De-NOx Catalysts [J]. Progress in Chemistry, 2016, 28(10): 1578-1590.
[6] Liu Fudong, Shan Wenpo, Shi Xiaoyan, He Hong. Vanadium-Based Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2012, 24(04): 445-455.
[7] . Reaction and Mechanism of Low-Temperature Selective Catalytic Reduction of NOx by NH3 over Manganese Oxide-based Catalysts [J]. Progress in Chemistry, 2010, 22(10): 1882-1900.
[8] Guo Lihong Liu Yong Meng Ming. NOx Storage-Reduction Catalysts Used for Lean-Burn NOx Removal [J]. Progress in Chemistry, 2009, 21(05): 964-970.
[9]

Ma Tao|Wang Rui**

. Catalytic Decomposition of NOx [J]. Progress in Chemistry, 2008, 20(06): 798-810.
[10] Gao Pingzhang,Lu Naihao,Gao Zhonghong**. Protein Tyrosine Nitration Determination [J]. Progress in Chemistry, 2007, 19(04): 590-597.
[11] Quan Chi,Kaixun Huang**. Protein Tyrosine Nitration [J]. Progress in Chemistry, 2006, 18(0708): 1019-1025.
[12] Hailing Li Huibi Xu Zhonghong Gao . Biological Microelement Iron and Protein Tyrosine Nitration [J]. Progress in Chemistry, 2006, 18(05): 622-626.