中文
Announcement
More
Progress in Chemistry 2009, Vol. 21 Issue (12): 2542-2550 Previous Articles   Next Articles

• Review •

Low-Temperature Solid-State Synthesis of Mental Oxide and Sulfide Nanomaterials

Liu Jinsong**; Li Ziquan; Cao Jieming   

  1. (College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
  • Received: Revised: Online: Published:
  • Contact: Liu Jinsong E-mail:jsliu@nuaa.edu.cn
PDF ( 2312 ) Cited
Export

EndNote

Ris

BibTeX

Low-temperature solid-state synthesis methods for the mental oxide and sulfide nanomaterials which have exhibited the unique physical chemical properties are reviewed and classified in this paper. The simple solid-state synthesis routes, six different reaction types, the characterization about structure, composition, morphology, optics, stability and other properties of the products, and the possible synthesis mechanism of low-temperature solid-state reactions are emphasized. Some typical examples are also illustrated. Compared with gas or solution synthesis, low-temperature solid-state synthesis has many advantages in synthesizing mental oxides and sulfides nanomaterials, such as simple operation, low cost, little pollution and being able to industrialization.

Contents
1 Introduction
2 Introduction and experiment route of low-temperature solid-state synthesis
2.1 Simple introduction
2.2 Experiment route
3 Low-temperature solid-state synthesis types and study contents of metal oxides and sulfides
3.1 Room-temperature direct reaction method
3.2 Addition-assisted room-temperature direct reaction method
3.3 Addition-assisted heat-treating reaction method
3.4 Solution-solid room-temperature synthesis method
3.5 Mixture heat-treating reaction method
3.6 Precursor heat-treating reaction method
4 Characterization and property studies of metal oxides and sulfids synthesized by low-temperature solid-state reaction
4.1 Structure, composition and morphologies
4.2 Optics and stability
4.3 Other properties
5 Low-temperature solid-state synthesis mechanism of metal oxides and sulfides
6 Summary and prospects

CLC Number: 

[ 1 ]  Moriceau P , Lebouteiller A. Phys. Chem. Phys. , 1999 , 1 : 5735 — 5744
[ 2 ]  徐毓龙(Xu YL) , Heiland G. 传感技术学报(Chinese Journal of Sensors and Actuators) , 1995 , 4 : 59 —64
[ 3 ]  Ziese M. Rep. Prog. Phys. , 2002 , 65 : 143 —249
[ 4 ]  Vanmaekelbergh D , Liljeroth P. Chem. Soc. Rev. , 2005 , 34 : 299 —312
[ 5 ]  Rapoport L , Bilik Y, Feldman Y, et al . Nature , 1997 , 387 : 791 — 793
[ 6 ]  Chhowalla M, Amaratunga GA J . Nature , 2000 , 407 : 164 —167
[ 7 ]  Winter M, Besenhard J O , Spahr M E , et al . Adv. Mater. , 1998 , 10 : 725 —763
[ 8 ]  Gratzel M. Chem. Lett . , 2005 , 34 : 8 —13
[ 9 ]  Zhang Y, Jia H , Luo X. J . Phys. Chem. B , 2003 , 107 (33) : 8289 —8293
[10 ]  Jie J S , Zhang W J , Jiang Y, et al . Nanotechnology , 2006 , 17 (12) : 2913 —2917
[11 ]  Liu Y, Liu M. Adv. Funct . Mater. , 2005 , 15 (1) : 57 —62
[12 ]  Park S , Lim S , Choi H. Chem. Mater. , 2006 , 18 (22) : 5150 — 5152
[13 ]  Nair J P , Wachtel E , Lubomirsky I , et al . Adv. Mater. , 2003 , 15 (24) : 2077 —2081
[14 ]  Choi H , Park S H. J . Am. Chem. Soc. , 2004 , 126 (20) : 6248 — 6249
[15 ]  Wang X, Li Y. J . Am. Chem. Soc. , 2002 , 124 (12) : 2880 —2881
[16 ]  王成云(Wang C Y) , 苏庆德(Su Q D) , 钱逸泰(Qian Y T) . 化学研究与应用(Chem. Res. Appl . ) , 2001 , 13 (4) : 402 —405
[17 ]  Lakshmi B B , Patrissi C J , Martin C R. Chem. Mater. , 1997 , 9 (11) : 2544 —2550
[18 ]  徐如人(Xu R R) , 庞文琴( Pang W Q) . 无机合成与制备化学 ( Inorganic Synthesis &Preparation Chemistry) . 北京: 高等教育出版社(Beijing : High Education Press) , 2005. 62 —63
[19 ]  周益明(Zhou YM) , 忻新泉(Xin X Q) , 无机化学学报(Chinese J . Inorg. Chem. ) , 1999 , 15 (3) : 273 —292
[20 ]  洪广言(Hong G Y) . 无机固体化学( Inorganic Solid Chemistry) , 北京: 科学出版社(Beijing : Science Press) , 2002. 186 —199
[21 ]  Sun XL , Hong G Y. Chin. Chem. Lett . , 2001 , 12 (2) : 187 —188
[22 ]  俞建群(Yu J Q) , 贾殿赠(Jia D Z) , 张慧(Zhang H) 等. 化学通报(Chemistry) , 1998 , 2 : 35 —37
[23 ]  谭继业( Tan J Y) , 邹凡( Zou F) . 大连大学学报(J . Dalan Univ. ) , 2003 , 24 (2) : 52 —58
[24 ]  Zhou T Y, Yuan X, Hong J M, et al . Mater. Lett . , 2006 , 60 : 168 —172
[25 ]  Sun Z P , Liu L , Zhang L , et al . Nanotechnology , 2006 , 17 : 2266 —2270
[26 ]  Jin C F , Yuan X, Ge W W, et al . Nanotechnology , 2003 , 14 : 667 —669
[27 ]  Zhou T Y, Xin X Q. Nanotechnology , 2004 , 15 : 534 —536
[28 ]  Wang W Z, Liu Z H , Zheng C L , et al . Mater. Lett . , 2003 , 57 : 2755 —2760
[29 ]  Cao YL , Jia D Z, Liu L , et al . Chinese J . Chem. , 2004 , 22 : 1288 —1290
[30 ]  高艳阳(Gao Y Y) , 张月(Zhang Y) , 王金霞(Wang J X) . 中北大学学报自然科学版( J . North Univ. China (Natural Sci . Edition) ) , 2007 , 28 (1) : 57 —59
[31 ]  龚良玉(Gong L Y) , 曹艳霞(Cao Y X) , 刘海东(Liu H D) . 无机盐工业( Inorg. Chem. Industry) , 2008 , 40 (10) : 21 —25
[32 ]  Wang W Z, Zhan Y J , Wang X S , et al . Mater. Res. Bulletin , 2002 , 37 : 1093 —1100
[33 ]  王文忠(Wang W Z) , 谭琳(Tan L) . 中央民族大学学报自然科学版(J . Central Univ. Nat . (Natural Sci . Edition) ) , 2008 , 17 (1) : 5 —9
[34 ]  Wang W Z, Ling A , Guang H , et al . Mater. Lett . , 2008 , 62 : 1014 —1017
[35 ]  Wang W Z, Zhan YJ , Wang G H. Chem. Commun. , 2001 , 727 — 728
[36 ]  王文忠(Wang W Z) , 何清(He Q) , 庄燕(Zhuang Y) . 化工新型材料(New Chem. Mater. ) , 2007 , 35 (11) : 29 —31
[37 ]  Wang W Z, Liu Y K, Zhan Y J , et al . Mater. Res. Bulletin , 2001 , 36 : 1977 —1984
[38 ]  Chen Y T, Guo Y, Li H L , et al . Chem. Lett . , 2002 , 602 —603
[39 ]  周杰(Zhou J ) , 贾殿赠(Jia D Z) , 刘浪(Liu L) 等. 高等学校化学学报(Chem. J . Chinese Univer. ) , 2005 , 26 (4) : 620 —622
[40 ]  Liu J S , Cao J M, Li Z Q , et al . J . Mater. Sci . , 2007 , 42 : 1054 —1059
[41 ]  刘劲松(Liu J S) , 曹洁明(Cao J M) , 李子全(Li Z Q) 等. 无机化学学报(Chinese J . Inorg. Chem. ) , 2007 , 23 (5) : 833 —838
[42 ]  龚良玉(Gong L Y) , 曲宝涵(Qu B H) , 李旭云(Li X Y) 等. 化学研究与应用(Chem. Res. Appl . ) , 2008 , 20 (10) : 1353 —1355
[43 ]  Liu Q , Ni Y H , Yin G, et al . Mater. Chem. Phys. , 2005 , 89 : 379 —382
[44 ]  Chen C N , Zhu CL , Hao L Y, et al . Chem. Lett . , 2004 , 33 (7) : 898 —899
[45 ]  Wang ZJ , Zhang H M, Zhang L G, et al . Nanotechnology , 2003 , 14 : 11 —15
[46 ]  Li Q W, Luo G A , Li J , et al . J . Mater. Processing Technol . , 2003 , 137 : 25 —29
[47 ]  张宝宏( Zhang B H) , 张娜( Zhang N) , 物理化学学报(Acta Phys. Chim. Sin. ) , 2003 , 19 (3) : 286 —288
[48 ]  袁安保(Yuan A B) , 章庆林(Zhang Q L) . 功能材料与器件学报(J . Func. Mater. Devices) , 2007 , 13 (1) : 1 —6
[49 ]  Wang L P , Hong G Y. Mater. Res. Bulletin , 2000 , 35 : 695 —701
[50 ]  Du Y, Zhang M S , Hong J , et al . Appl . Phys. A , 2003 , 76 : 171 —176
[51 ]  Lv H Y, Zhu S Y, Tan S S. J . Cryst . Growth , 2004 , 269 : 385 — 391
[52 ]  Chen Y, Zhu J M, Zhu X H , et al . Mater. Sci . Eng. B , 2003 , 99 : 52 —55
[53 ]  王华清(Wang H Q) , 周上祺(Zhou S Q) , 陈昌国(Chen C G) . 化学通报(Chemistry) , 2005 , 3 : 204 —208
[54 ]  牛新书(Niu X S) , 王雪丽(Wang XL) , 赵晓华(Zhao X H) 等. 电子元件与材料( Electronic Components &Materials) , 2008 , 27 (6) : 45 —47
[55 ]  庄稼(Zhuang J ) , 朱达川(Zhu D C) , 迟燕华(Chi Y H) 等. 化学研究与应用(Chem. Res. Appl . ) , 2004 , 16 (6) : 839 —840
[56 ]  盖广清(Gai GQ) , 董相延(Dong X Y) , 王进贤(Wang J X) . 稀有金属材料与工程( Rare Metal Mater. Eng. ) , 2007 , 36 (3) : 437 —439
[57 ]  胡辉( Hu H) , 高艳阳( Gao Y Y) . 应用化工(Appl . Chem. Industry) , 2003 , 32 (5) : 30 —32
[58 ]  栗海锋(Li H F) , 高家利(Gao J L) , 文衍宣(Wen Y X) 等. 有色金属冶炼部分(Nonferrous Metals ( Extractive melallurgy) , 2008 , 4 : 47 —50
[59 ]  李亚东(Li YD) , 王鹏飞(Wang P F) . 信息记录材料( Inform. Record. Mater. ) , 2007 , 8 (1) : 10 —13
[60 ]  刘厚凡(Liu H F) , 高长华(Gao C H) , 邹海平(Zou H P) 等. 无机盐工业( Inorg. Chem. Industry) , 2007 , 39 (6) : 33 —35
[61 ]  马宏文(Ma H W) , 矫立男(Jiao L N) , 杨雪( Yang X) . 化学与生物工程(Chem. Bioengineer. ) , 2006 , 23 (4) : 17 —18
[62 ]  杨华明(Yang H M) , 张科(Zhang K) , 史蓉蓉(Shi R R) 等. 材料科学与工程学报(J . Mater. Sci . Engineer. ) , 2005 , 23 (4) : 503 —506
[63 ]  姜国华(Jiang G H) , 姜继森(Jiang J S) . 高等学校化学学报(Chem. J . Chinese Univ. ) , 2004 , 25 (3) : 405 —408
[64 ]  Chi Y H , Zhuang J , Yu J , et al . Chinese J . Inorg. Chem. , 2004 , 20 (4) : 479 —482
[65 ]  Wang T X, Xiao H , Zhang Y C. Mater. Lett . , 2008 , 62 : 3736 — 3738
[66 ]  刘劲松(Liu J S) , 李子全(Li ZQ) , 陈建康(Chen J K) . 分析仪器(Analy. Instru. ) , 2009 , 3 : 40 —45

[1] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[2] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[3] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[4] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[5] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[6] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[7] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[8] Qiao Jiang, Xuehui Xu, Baoquan Ding. Regulation of Condensed States of Biological Macromolecules by Rationally Designed Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1128-1139.
[9] Yang Liu, Xinbo Zhang, Yingcan Zhao. Two-Dimensional MoS2 Nanomaterials and Applications in Water Treatment [J]. Progress in Chemistry, 2020, 32(5): 642-655.
[10] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[11] Lei Zhu, Jianan Wang, Jianwei Liu, Ling Wang, Wei Yan. Applications of Electrospun One-Dimensional Nanomaterials in Gas Sensors [J]. Progress in Chemistry, 2020, 32(2/3): 344-360.
[12] Wei Li, Ziyu Yang, Yanglong Hou, Song Gao. Controllable Preparation and Magnetism Control of Two-Dimensional Magnetic Nanomaterials [J]. Progress in Chemistry, 2020, 32(10): 1437-1451.
[13] Yue Yang, Jueyu Wang, Min Zhao, Daizong Cui. Virus-Templated Synthesis of Metal Nanomaterials and Their Application [J]. Progress in Chemistry, 2019, 31(7): 1007-1019.
[14] He Chen, Shuaiqi Zhang, Zhixue Zhao, Meng Liu, Qingrui Zhang. Application of Dopamine Functional Materials in Water Pollution Control [J]. Progress in Chemistry, 2019, 31(4): 571-579.
[15] Yang Shen, Jiwen Hu, Tingting Liu, Hongwen Gao, Zhangjun Hu. Colorimetric and Fluorogenic Chemosensors for Mercury Ion Based on Nanomaterials [J]. Progress in Chemistry, 2019, 31(4): 536-549.