中文
Announcement
More
Progress in Chemistry 2009, Vol. 21 Issue (11): 2349-2357 Previous Articles   Next Articles

• Special issues •

Sustainable Exploitation and Comprehensive Utilization of Salt Lake Resources in China

Ma Peihua*   

  1. (Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China)
  • Received: Online: Published:
  • Contact: Ma Peihua E-mail:phma28@vip.sina.com
PDF ( 2492 ) Cited
Export

EndNote

Ris

BibTeX

The Chinese salt lake resources are exploiting currently in a large scale along with the development of Chinese economy and the effectively performance of the police of west great development. The paper demonstrates the relative technologies of exploiting salt lake resources in oversea and China, and introduces the developing status of potash, lithium salts and magnesium industry. The paper also proposes some suggests about reasonably exploiting salt lake resources in the light of principles of sustainable development and comprehensive utilization of resources.

Contents
1 New stage of large exploitation of Chinese salt lake's potassium resources
1.1 Demand of potassium
1.2 Status of potassium industry
2 A significant progress in the extraction of lithium from salt lakes
2.1 Demand and production of lithium
2.2 Breakthrough of the extraction of lithium from salt lakes containing high ratio of magnesium resources in Qinghai salt lakes
3.1 A new process for manufacture of anhydrous magnesium chloride from bischofite of salt lakes
3.2 Combination of manufacture of magnesium and chemical engineering of natural gas
4 Comprehensive utilization of resources as the base of exploitation of salt lakes

CLC Number: 

[ 1 ]  U. S. Geological Survey , Mineral Commodity Summaries , 1995 —2009
[ 2 ]  曹文虎(Cao W H) . 青海省矿产资源开发与产业发展战略研究. 北京: 地质出版社(Beijing: Geological Publishing House) ,2004. 115 —133
[ 3 ]  王石军(Wang S J ) . 化工矿物与加工( Industrial Minerals and Processing) , 2005 , 34 (1) : 30 —32
[ 4 ]  李浩(Li H) , 唐中凡(Tang Z F) , 刘传福(Liu C F) 等. 地球学报(Acta Geoscientia Sinica) , 2008 , 29 (4) : 517 —524
[ 5 ]  马培华(Ma P F) , 中国科学院院刊(Bulletin of the Chinese Academy of Sciences) , 1999 , 210 —213
[ 6 ]  Yuan X. The Proceeding of the Ninth Symposium on Lithium ,Rubidium and Cesium , 1995
[ 7 ]  Harben P , Edwards G. Industrial Minerals , 1997 , 25
[ 8 ]  Owen J R. Chem. Soc. Rev. 1997 , 26 : 259 —267
[ 9 ]  戴自希(Dai Z X) . 中国有色冶金(China Nonferrous Metallurgy) ,2008 (4) : 17 —21
[10 ]  Anguita F. Phosphorus and Potassium , 1997 , 212 : 16
[11 ]  Phosphorus and Potassium , 1997 , 211 : 15
[12 ]  Phosphorus and Potassium , 1997 , 209 : 17
[13 ]  Hayes D. Phosphorus and Potassium , 1999 , 224 : 10

[1] Zhendong Liu, Jiajie Pan, Quanbing Liu. Application of Machine Learning in the Design of Cathode Materials and Electrolytes for High-Performance Lithium Batteries [J]. Progress in Chemistry, 2023, 35(4): 577-592.
[2] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[3] Guohui Zhu, Hongxian Huan, Dawei Yu, Xueyi Guo, Qinghua Tian. Selective Recovery of Lithium from Spent Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(2): 287-301.
[4] Xinyang Yue, Jian Bao, Cui Ma, Xiaojing Wu, Yongning Zhou. Three-Dimension Skeleton Supported Lithium Metal Composite Anodes through Thermal Infusing Strategy [J]. Progress in Chemistry, 2022, 34(3): 683-695.
[5] Chi Guo, Wang Zhang, Ji Tu, Shengrui Chen, Jiyuan Liang, Xiangke Guo. Construction of 3D Copper-Based Collector and Its Application in Lithium Metal Batteries [J]. Progress in Chemistry, 2022, 34(2): 370-383.
[6] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[7] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[8] Xinye Liu, Zhichao Liang, Shanxing Wang, Yuanfu Deng, Guohua Chen. Carbon-Based Materials for Modification of Polyolefin Separators to Improve the Performance of Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1665-1678.
[9] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[10] Kedi Cai, Shuang Yan, Tianye Xu, Xiaoshi Lang, Zhenhua Wang. Investigation of Electrode Materials for Lithium Ion Capacitor Battery [J]. Progress in Chemistry, 2021, 33(8): 1404-1413.
[11] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[12] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[13] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[14] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.
[15] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.