中文
Announcement
More
Progress in Chemistry 2009, Vol. 21 Issue (11): 2333-2340 Previous Articles   Next Articles

• Special issues •

Redox Flow Battery Technology

Zhang Huamin1*;    Zhang Yu2;    Liu Zonghao1;    Wang Xiaoli2   

  1. (1. Dalian Institute of Chemical Physics of Chinese Academy of Science, Dalian 116023, China;2. Dalian RONGKEPOWER Co.,Ltd., Dalian 116025, China)
  • Received: Online: Published:
  • Contact: Zhang Huamin E-mail:zhanghm@dicp.ac.cn
PDF ( 4620 ) Cited
Export

EndNote

Ris

BibTeX

Redox flow battery technology is a new electrical energy storage technology with virtues of high efficiency and large scale. It can meet the great demands of promoting the wide application of the renewable resources, pushing the construction of smart grid and achieving the target for energy saving and emission reduction. In this paper, we focus on the introduction to the working principles, characteristics, R&D progress and development trend of the all-vanadium, sodium polysulfide/bromine and zinc/bromine redox flow batteries. Also we discuss other types of flow batteries. Finally, the key problems limiting the technology development are pointed out and the suggestions for future research are given.

Contents
1 Introduction
2 All-vanadium redox flow battery
2.1 Principles and characteristics of all-vanadium redox flow battery
2.2 Progress and trend of all-vanadium redox flow battery
3 Sodium polysulfide/bromine redox flow battery
3.1 Principles and characteristics of sodium polysulfide/bromine redox flow battery
3.2 Progress and trend of sodium polysulfide/bromine redox flow battery
4 Zinc/bromine battery
4.1 Principles and characteristics of zinc/bromine battery
4.2 Progress and trend of zinc/bromine battery
5 Other redox flow batteries
5.1 Fe/Cr redox flow battery
5.2 Vanadium/polyhalid redox flow battery
5.3 New lead acid and zinc/ nickel redox flow batteries
5.4 Mn/V redox flow battery
5.5 Ce/V redox flow battery
5.6 All chromium redox flow battery
5.7 All ruthenium redox flow battery
5.8 Actinide redox flow battery
6 Issues and perspectives

CLC Number: 

[ 1 ]  Fabjan C , Garche J , Harrer B. Electrochimica Acta , 2001 , 47 (5) :825 —831
[ 2 ]  张华民( Zhang H M) . 电源技术( Chinese Journal of Power Sources) , 2007 , 31 (8) : 587 —591
[ 3 ]  Skyllas-Kazacos M. (2005-10-02) . http://www.ceic.unsw.edu.au/centers/vrb/overview.htm
[ 4 ]  Skyllas-Kazacos M, Kasherman D , Hong D R , et al . J . Power Sources , 1991 , 35 : 399 —404
[ 5 ]  Tokuda N , Kanno T, Hara T, et al . SEI Technical Review , 2000 ,50 : 88 —94
[ 6 ]  Miyake S. (2004-08-22) . http://www.electricitystorage.org/pubs/2001/IEEE-PES-Summer2001/Miyake.pdf
[ 7 ]  Kaneko H , Nozaki K, Wada Y, et al . Electrochimica Acta , 1991 ,36 (7) : 1191 —1196
[ 8 ]  Shibata A , Sato K. Power engineering J . , 1999 , 13 (3) : 130 —135
[ 9 ]  (2006-03-23) . http://www.vrbpower.com/applications/projects.html
[10 ]  [2009-04-28 ] . http://www.vrbpower.com
[11 ]  [2009-04-28 ] . http://www.cellstrom.at
[12 ]  [2009-04-30 ] . http://pemfckt.dicp.ac.cn/02news/31.htm
[13 ]  [2009-04-30 ] . http://pemfckt.dicp.ac.cn/02news/47.html
[14 ]  Hazza A , Pletcher D , Wills R. Phys. Chem. Chem. Phys. , 2004 ,6 : 1773 —1778
[15 ]  Pletcher D , Wills R. Phys. Chem. Chem. Phys. , 2004 , 6 :1779 —1785
[16 ]  Pletcher D , Wills R. J . Power Source , 2005 , 149 : 96 —102
[17 ]  Hazza A , Pletcher D , Wills R , Richard W. J . Power Source , 2005 ,149 : 103 —111
[18 ]  Pletcher D , Zhou H T, Kear G, et al . J . Power Source , 2008 ,180 : 621 —629
[19 ]  Xue F Q , Wang Y L , Wang W H , et al . Electrochimica Acta ,2008 , 53 : 6636 —6642
[20 ]  Bradley S. US312502 , 1885
[21 ]  David L , Thomas B R. Handbook of Batteries (3rd ed. ) , McGram Hill , 2002
[22 ]  [2009-04-30 ] . http://www.zbbenergy.com/
[23 ]  Phillip E. Development of Zinc/Bromine Batteries for Load-Leveling Applications : Phase 1 Final Report , 1999
[24 ]  Nanch C , Phillip E , Peter L. Development of Zinc/Bromine Batteries for Load-Leveling Applications : Phase 2 Final Report , 1999
[25 ]  Skyllas-Kazacos MJ . J . Power Source , 2003 , 124 : 299 —302
[26 ]  Cheng J , Zhang L , Yang Y S , et al . Electrochem. Commun. ,2007 , 9 (11) : 2639 —2642
[27 ]  Fang B , Iwasa S , Wei Y, et al . Electrochimica Acta , 2002 , 47 :3971 —3976
[28 ]  Paulenova A , Creagerb S E , Navratila J D , et al . J . Power Source ,2002 , 109 : 431 —438
[29 ]  Bae C H , Roberts E P L , Dryfe R A W. Electrochimica Acta ,2002 , 48 : 279 —287
[30 ]  Matsuda Y, Tanaka K, Okada M, et al . Applied Electrochemistry ,1988 , 18 : 909 —914
[31 ]  Yoshinobu S , Hajimu Y, Hirotake M. Journal of Nuclear Science and Technology , 2000 , 37 (3) : 253 —256
[32 ]  Hasegawa K, Kimura A , Yamamura T, et al . Physics and Chemistry of Solids , 2005 , 66 (2/4) : 593 —595
[33 ]  Yamamura T, Watanabe N , Shiokawa Y. J . Alloys and Compounds ,2006 , 408/412 : 1260 —1266

[1] Wang Gang, Chen Jinwei, Zhu Shifu, Zhang Jie, Liu Xiaojiang, Wang Ruilin. Activation of Carbon Electrodes for All-Vanadium Redox Flow Battery [J]. Progress in Chemistry, 2015, 27(10): 1343-1355.
[2] Wang Gang, Chen Jinwei, Wang Xueqin, Tian Jing, Liu Xiaojiang, Wang Ruilin. Electrolyte for All-Vanadium Redox Flow Battery [J]. Progress in Chemistry, 2013, 25(07): 1102-1112.
[3] . Membranes for All-Vanadium Redox Flow Battery [J]. Progress in Chemistry, 2010, 22(0203): 384-387.
Viewed
Full text


Abstract

Redox Flow Battery Technology