中文
Announcement
More
Progress in Chemistry 2009, Vol. 21 Issue (10): 2219-2228 Previous Articles   Next Articles

• Review •

Hydrogen Generation from Catalytic Hydrolysis of Sodium Borohydride Solution

Liang Yan;  Wang Ping;  Dai Hongbin**   

  1. (Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyan 110016, China)
  • Received: Revised: Online: Published:
  • Contact: Dai Hongbin E-mail:hbdai@imr.ac.cn
PDF ( 3434 ) Cited
Export

EndNote

Ris

BibTeX

Hydrogen generation (HG) from catalytic hydrolysis of sodium borohydride (NaBH4) solution is a promising integrated technology for on-board hydrogen storage/generation. In this perspective, we present the principle of HG from NaBH4 solution, and review the current progresses in catalysts, reaction kinetics, reaction mechanism, design of reaction generator and recycle of hydrolysis production, and then discuss some remaining problems in the development of NaBH4-based HG system. Supported catalyst with high-activity and durability is desirable in developing the HG system for practical application. The design of hydrogen generator should focus on the utilization of reaction heat to preheat fuel, the recycle of water from the fuel cell and the technology of separation by the membrane. The highly efficient regeneration of NaBH4 can reduce its cost, thus promoting the commercial applications of the NaBH4-based HG system.

Contents
1 Introduction
2 The current status and progress of hydrogen generation from catalytic hydrolysis of NaBH4 solution
2.1 The principle of hydrogen generation from catalytic hydrolysis of NaBH4 solution
2.2 The development of catalyst of hydrogen generation from catalytic hydrolysis of NaBH4 solution
2.3 Study of reaction kinetics of hydrogen generation from catalytic hydrolysis of NaBH4 solution
2.4 Study of reaction mechanism of hydrogen generation from catalytic hydrolysis of NaBH4 solution
2.5 Design of reaction generator of hydrogen generation from catalytic hydrolysis of NaBH4 solution
2.6 Regeneration of NaBH4 from the hydrolysis production (NaBO2)
3 Conclusion and outlook

CLC Number: 

[ 1 ]  Schlapbach L , Züttel A. Nature , 2001 , 414 (6861) : 353 —358
[ 2 ]  Satyapal S , Petrovic J , Read C , et al . Catal . Today , 2007 , 120 (3/4) : 246 —256
[ 3 ]  Orimo S , Nakamori Y, Eliseo J R , et al . Chem. Rev. , 2007 , 107(10) : 4111 —4132
[ 4 ]  Ross D K. Vacuum , 2006 , 80 (10) : 1084 —1089
[ 5 ]  Kong V C Y, Foulkes F R , Kirk D W, et al . Int . J . Hydrogen Energy , 1999 , 24 (7) : 665 —675
[ 6 ]  Kong V C Y, Kirk D W, Foulkes F R , et al . Int . J . Hydrogen Energy , 2003 , 28 (2) : 205 —214
[ 7 ]  Wang P , Kang X D. Dalton Trans. , 2008 , (40) : 5400 —5413
[ 8 ]  Schlesinger H I , Brown H C. US 2461661 , 1949
[ 9 ]  Urgnani J , Torres F J , Palumbo M, et al . Int . J . Hydrogen Energy ,2008 , 33 (12) : 3111 —3115
[10 ]  Hyde J . Chrysler Offers Fuel Cell Van with Soapy Twist . Reuters World Environment News , ( 2001-12-12 ) [ 2008-10-01 ] . http ://www. planetark. org-dailnewsstory. cfm-newsid-13671/story. htm
[11 ]  Schlesinger H I , Brown H C , Finholt A E , et al . J . Am. Chem.Soc. , 1953 , 75 (1) : 215 —219
[12 ]  Brown H C , Brown C A. J . Am. Chem. Soc. , 1962 , 84 (8) :1493 —1494
[13 ]  Levy A , Brown J B , Lyons CJ . Ind. Eng. Chem. , 1960 , 52 (3) :211 —214
[14 ]  Amendola S C , Sharp-Goldman S L , Janjua M S , et al . Int . J .Hydrogen Energy , 2000 , 25 (10) : 969 —975
[15 ]  Amendola S C , Sharp-Goldman S L , Janjua M S , et al . J . Power Sources , 2000 , 85 (2) : 186 —189
[16 ]  潘相敏(Pan X M) , 马建新(Ma J X) . 天然气化工(Natural Gas Chemical Industry) , 2003 , 28 (5) : 51 —55
[17 ]  Richardson B S , Birdwell J F , Pin F G, et al . J . Power Sources ,2005 , 145 (1) : 21 —29
[18 ]  Wee J H , Kim K Y. Fuel Process. Technol . , 2006 , 87 (9) : 811 —819
[19 ]  徐东彦(Xu D Y) , 张华明(Zhang H M) , 叶威(Ye W) . 化学进展(Progress in Chemistry) , 2007 , 19 (10) : 1599 —1605
[20 ]  Kaufman C M, Sen B. J . Chem. Soc. Dalton Trans. , 1985 , (2) :307 —313
[21 ]  Kreevoy MM, Jacobson R W. Ventron Alembic , 1979 , 15 : 2 —3
[22 ]  Aiello R , Sharp J H , Matthews M A. Int . J . Hydrogen Energy ,1999 , 24 (12) : 1123 —1130
[23 ]  Marrero-Alfonso E Y, Gray J R , Davis TA , et al . Int . J . Hydrogen Energy , 2007 , 32 (18) : 4717 —4722
[24 ]  Moon G Y, Lee S S , Lee K Y, et al . J . Ind. Eng. Chem. , 2008 ,14 (1) : 94 —99
[25 ]  Minkina V G, Shabunya S I , Kalinin V I , et al . Russ. J . Appl .Chem. , 2008 , 81 (3) : 380 —385
[26 ]  Ozkar S , Zahmakiran M. J . Alloy Compd. , 2005 , 404 : 728 —731
[27 ]  Demirci U B , Garin F. J . Mol . Catal . A: Chem. , 2008 , 279 (1) :57 —62
[28 ]  Zahmakiran M, ; zkar S. Langmuir , 2008 , 24 (14) : 7065 —7067
[29 ]  Kojima Y, Suzuki K, Fukumoto K, et al . Int . J . Hydrogen Energy ,2002 , 27 (10) : 1029 —1034
[30 ]  Kojima Y, Suzuki K, Fukumoto K, et al . J . Power Sources , 2004 ,125 (1) : 22 —26
[31 ]  Demirci U B , Garin F. J . Alloys Compd. , 2008 , 463 (1/2) : 107 —111
[32 ]  Pěna/Alonso R , Sicurelli A , Callone E , et al . J . Power Sources ,2007 , 165 (1) : 315 —323
[33 ]  Krishnan P , Yang T H , Lee W Y, et al . J . Power Sources , 2005 ,143 (1/2) : 17 —23
[34 ]  Krishnan P , Hsueh K L , Yim S D. Appl . Catal . B : Environ. ,2007 , 77 (1/2) : 206 —214
[35 ]  Liu B H , Li Z P , Suda S. J . Alloys Compd. , 2006 , 415 (1/2) :288 —293
[36 ]  Ingersoll J C , Mania N , Thenmozhiyal J C , et al . J . Power Sources ,2007 , 173 (1) : 450 —457
[37 ]  Wu C , Bai Y, Wu F. Mater. Lett . , 2008 , 62 (27) : 4242 —4244
[38 ]  Dong H , Yang H X, Ai X P , et al . Int . J . Hydrogen Energy ,2003 , 28 (10) : 1095 —1100
[39 ]  Jeong S U , Kim R , Cho E A , et al . J . Power Sources , 2005 , 144(1) : 129 —134
[40 ]  Lee J , Kong K Y, Jung C R , et al . Catal . Today , 2007 , 120 (3-4) : 305 —310
[41 ]  Kim S J , Lee J , Kong K Y, et al . J . Power Sources , 2007 , 170(2) : 412 —418
[42 ]  Dai H B , Liang Y, Wang P , et al . J . Power Sources , 2008 , 177(1) : 17 —23
[43 ]  Suda S , Sun Y M, Liu B H , et al . Appl . Phys. A: Mater. Sci .Process. , 2001 , 72 (2) : 209 —212
[44 ]  Zhao J , Ma H , Chen J . Int . J . Hydrogen Energy , 2007 , 32 (18) :4711 —4716
[45 ]  Xu D Y, Dai P , Liu X M, et al . J . Power Sources , 2008 , 182(2) : 616 —620
[46 ]  Patel N , Fernandes R , Gueela G, et al . Appl . Surf . Sci . , 2007 ,254 (4) : 1307 —1311
[47 ]  Liu ZL , Guo B , Chan S H , et al . J . Power Sources , 2008 , 176(1) : 306 —311
[48 ]  Liu R S , Lai H C , Bagkar N C , et al . J . Phys. Chem. B , 2008 ,112 (16) : 4870 —4875
[49 ]  Kojima Y, Suzuki K, Kawai Y. J . Power Sources , 2006 , 155 (2) :325 —328
[50 ]  KimJ H , Kim K T, Kang Y M, et al . J . Alloys Compd. , 2004 ,379 (1-2) : 222 —227
[51 ]  Hsueh CL , Chen C Y, Ku J R , et al . J . Power Sources , 2008 , 177(2) : 485 —492
[52 ]  Demirci U B , Garin F. Catal . Commun. , 2008 , 9 (6) : 1167 —1172
[53 ]  Cho KW, Kwon H S. Catal . Today , 2007 , 120 (3P4) : 298 —304
[54 ]  Mitov M, Rashkov R , Atanassov N , et al . J . Mater. Sci . , 2007 ,42 (10) : 3367 —3372
[55 ]  Patel N , Guella G, Kale A , et al . Appl . Catal . A: Gen. , 2007 ,323 : 18 —24
[56 ]  Patel N , Patton B , Zanchetta C , et al . Int . J . Hydrogen Energy ,2008 , 33 (1) : 287 —292
[57 ]  Patel N , Fernandes R , Guella G, et al . J . Phys. Chem. C , 2008 ,112 (17) : 6968 —6976
[58 ]  王涛(Wang T) , 张熙贵(Zhang X G) , 李巨峰(Li J F) 等. 燃料化学学报(Journal of Fuel Chemistry and Technology) , 2004 , 32(6) :723 —728
[59 ]  Walter J C , Zurawski A , Montgomery D , et al . J . Power Sources ,2008 , 179 (1) : 335 —339
[60 ]  Wu C , Wu F , Bai Y, et al . Mater. Lett . , 2005 , 59 (14-15) :1748 —1751
[61 ]  Dai H B , Liang Y, Wang P , et al . Int . J . Hydrogen Energy , 2008 ,33 (16) : 4405 —4412
[62 ]  Bai Y, Wu C , Wu F , et al . Mater. Lett . , 2006 , 60 (17-18) :2236 —2239
[63 ]  Demirci U B , Garin F. Int . J . Green Energy , 2008 , 5 (3) : 148 —156
[64 ]  Corma A. Chem. Rev. , 1997 , 97 (6) : 2373 —2419
[65 ]  李文震(Li W Z) , 孙公权(Sun G Q) , 严玉山( Yan Y S) 等.化学进展(Progress in Chemistry) , 2005 , 17 (5) : 761 —772
[66 ]  李贺(Li H) , 姚素薇(Yao S W) , 张卫国(Zhang W G) 等. 化工进展(Chemical Industry and Engineering Progress) , 2005 , 24(7) : 718 —722
[67 ]  Liang J , Li L , Huang Y, et al . Int . J . Hydrogen Energy , 2008 , 33(15) : 4048 —4054
[68 ]  王书明(Wang S M) , 蒋利军(Jiang L J ) , 刘晓鹏(Liu X P)等. 电源技术(Chinese Journal of Power Sources) ,2006 , 30 (9) :707 —712
[69 ]  Pozio A , De Francesco M, Monteleone G, et al . Int . J . Hydrogen Energy , 2008 , 33 (1) : 51 —56
[70 ]  Zahmakiran M, ; zkar S. J . Mol . Catal . A: Chem. , 2006 , 258 (1/2) : 95 —103
[71 ]  Guella G, Patton B , Miotello A. J . Phys. Chem. C , 2007 , 111(50) : 18744 —18750
[72 ]  Shang Y, Chen R. Energy Fuels , 2006 , 20 (5) : 2149 —2154
[73 ]  Zhang Q L , Wu Y, Sun X L , et al . Ind. Eng. Chem. Res. , 2007 ,46 (4) : 1120 —1124
[74 ]  Ye W, Zhang H M, Xu D Y, et al . J . Power Sources , 2007 , 164(2) : 544 —548
[75 ]  Zhang J S , Delgass WN , Fishe T S , et al . J . Power Sources , 2007 ,164 (2) : 772 —781
[76 ]  Hung A J , Tsai S F , Hsu Y Y. Int . J . Hydrogen Energy , 2008 , 33(21) : 6205 —6215
[77 ]  Dai H B , Liang Y, Ma L P , et al . J . Phys. Chem. C , 2008 , 112(40) : 15886 —15892
[78 ]  赵鹏程(Zhao P C) , 谢自立(Xie Z L) , 杨子芹(Yang Z Q) 等.电源技术(Chinese Journal of Power Sources) , 2007 , 31 (12) :988 —990
[79 ]  Shang Y, Chen R. Energy Fuels , 2006 , 20 (5) : 2142 —2148
[80 ]  Amendola S C , Binder M, Sharp-Goldman S , et al . US 6683025B2 ,2004
[81 ]  Shang Y, Chen R , Jiang G. Int . J . Hydrogen Energy , 2008 , 33(22) : 6719 —6726
[82 ]  Holbrook KA ,Twist P J . J . Chem. Soc. A , 1971 , 890 —894
[83 ]  Guella G, Zanchetta C , Patton B , et al . J . Phys. Chem. B , 2006 ,110 (34) : 17024 —17033
[84 ]  Homma T, Nakai H , Onishi M, et al . J . Phys. Chem. B , 1999 ,103 (10) : 1774 —1778
[85 ]  Homma T, Tamaki A , Nakai H , et al . J . Electroanal . Chem. ,2003 , 559 : 131 —136
[86 ]  Li H X, Li H , Dai WL , et al . Appl . Catal . A , 2003 , 238 (1) :119 —130
[87 ]  Wu Y. Process for the Regeneration of Sodium Borate to Sodium Borohydride for Use as a Hydrogen Storage Source , DOE Hydrogen Program: FY 2005 Annual Progress Report , 2005 ( 2005-01-01) ,[ 2008-10-01 ] . http://www.hydrogen.energy.gov/annual-review05-storage.html
[88 ]  Wu Y. Development of Advanced Chemical Hydrogen Storage and Generation System , DOE Hydrogen Program: 2005 Annual Merit Review Proceedings Hydrogen Storage , [ 2008-10-01 ] . http://www.hydrogen.energy.gov/annual-review05-storage.html
[89 ]  Zhang J S , Zheng Y, Gore J P , et al . J . Power Sources , 2007 , 165(2) : 844 —853
[90 ]  Zhang J S , Zheng Y, Gore J P , et al . J . Power Sources , 2007 , 170(1) : 150 —159
[91 ]  Zhang Q , Smith G, Wu Y, et al . Int . J . Hydrogen Energy , 2006 ,31 (7) : 961 —965
[92 ]  Zhang Q , Smith G M, Wu Y. Int . J . Hydrogen Energy , 2007 , 32(18) : 4731 —4735
[93 ]  Bayer A G. BP 871569 , 1964
[94 ]  Kojima Y, Haga T. Int . J . Hydrogen Energy , 2003 , 28 (9) : 989 —993
[95 ]  Li Z P , Morigazaki N , Suda S , et al . J . Alloy Compd. , 2003 , 349(1/2) : 232 —236
[96 ]  Cooper B H. US 3734842-A , 1973
[97 ]  Hale C H , Sharifan H. US 4931154-A , 1989
[98 ]  Macdonald D D , Colominas S , Tokash J , et al . Electrochemical Hydrogen Storage Systems , DOE Hydrogen Program: FY 2007 Annual Progress Report , ( 2007-10-18 ) . [ 2008-10-01 ] . http://www.hydrogen.energy.gov/pdfs/progress07/iv-b-5c-macdonald.pdf
[99 ]  Moreno O A , Kelly M T, Ortega J V. Process for the Regeneration of sodium borate to sodium borohydride for use as a hydrogen storage source , DOE Hydrogen Program: FY 2007 Annual Progress Report ,(2007-10-18) . [ 2008-10-01 ].http://www.hydrogen.energy.gov/pdfs/progress07/iv-b-2-moreno.pdf

[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[4] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[5] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[6] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[7] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[8] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[9] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[10] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[11] Yiqiang Liu, Yimei Qiu, Xing Tang, Yong Sun, Xianhai Zeng, Lu Lin. Glucose Isomerization into Fructose by Chemocatalytic Route [J]. Progress in Chemistry, 2021, 33(11): 2128-2137.
[12] Andong Hu, Shungui Zhou, Jie Ye. The Mechanism, Progress and Prospect of Biohybrid Mediated Semi-Artificial Photosynthesis [J]. Progress in Chemistry, 2021, 33(11): 2103-2115.
[13] Mengting Xu, Yanqing Wang, Ya Mao, Jingjuan Li, Zhidong Jiang, Xianxia Yuan. Cathode Catalysts for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2021, 33(10): 1679-1692.
[14] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[15] Huina Zou, Shoufei Zhu. Progresses of 1,10-Phenanthroline Type Ligands in Fe/Co/Ni Catalysis [J]. Progress in Chemistry, 2020, 32(11): 1766-1803.