中文
Announcement
More
Progress in Chemistry 2009, Vol. 21 Issue (10): 2212-2218 Previous Articles   Next Articles

• Review •

Study of Hydrogen Storage Properties of Lithium Borohydride

Fang Zhanzhao ;   Kang Xiangdong ;   Wang Ping**   

  1. (Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China)
  • Received: Online: Published:
  • Contact: Wang Ping E-mail:pingwang@imr.ac.cn
  • Supported by:

    National Natural Science Foundation of China

PDF ( 2353 ) Cited
Export

EndNote

Ris

BibTeX

On-board hydrogen storage is generally recognized as the “bottleneck” in promoting the commercialization of hydrogen-powered vehicles. Development of high-performance hydrogen storage materials/technologies for on-board applications is therefore attracting intensive interest of the researchers from both energy and material fields. Recently, lithium borohydride (LiBH4) and other related complex metal hydrides have attracted ever-increasing attention as potential high-capacity hydrogen storage media. The paper reviews the latest progresses made in improving the reversible dehydrogenation of LiBH4 by using various methods, including material composition/reaction pathway tailoring, nanoporous scaffolds incorporation, anion/cation substitution, and catalyst doping, aiming at providing an outline of the key scientific issues and the potential solutions in developing borohydride-based hydrogen storage systems.

Contents
1 Introduction
2 Fundamental physical and chemical properties of LiBH4
3 Improved dehydrogenation/rehydrogenation properties of LiBH4
3.1 reactant destabilization
3.2 nanoporous scaffolds incorporation
3.3 anion/cation substitution
3.4 catalyst modification
4 Conclusion and outlook

CLC Number: 

[ 1 ]  Schultz M G, Diehl T, Brasseur G P , et al . Science , 2003 , 302(5645) : 624 —627
[ 2 ]  Schlapbach L , Züttel A. Nature , 2001 , 414 (6861) : 353 —358
[ 3 ]  Grochala W, Edwards P P. Chem. Rev. , 2004 , 104 (3) : 1283 —1315
[ 4 ]  Seayad A M, Antonelli D M. Adv. Mater. , 2004 , 16 ( 9P10) :765 —777
[ 5 ]  Orimo S , Nakamori Y, Eliseo J R , et al . Chem. Rev. , 2007 , 107(10) : 4111 —4132
[ 6 ]  Gutowska A , Li L Y, Shin Y S , et al . Angew. Chem. Int . Ed. ,2005 , 44 (23) : 3578 —3582
[ 7 ]  Wang P , Kang X D. Dalton Trans. , 2008 , (40) : 5400 —5413
[ 8 ]  Züttel A , Borgschulte A , Orimo S. Scr. Mater. , 2007 , 56 (10) :823 —828
[ 9 ]  Schlesinger H I , Brown H C. J . Am. Chem. Soc , 1940 , 62 (12) :3429 —3435
[10 ]  Züttel A , Rentsch S , Fischer P , et al . J . Alloys Compd. , 2003 ,356/357 : 515 —520
[11 ]  Soulié J , Renaudin G, Yvon K, et al . J . Alloys Compd. , 2002 ,346 : 200 —205
[12 ]  Orimo S , Nakamori Y, Ohba N , et al . Appl . Phys. Lett . , 2006 ,89 (2) : art . no. 021920
[13 ]  Mosegaard L , M?ller B , J?rgensen J E , et al . J . Alloys Compd. ,2007 , 446/447 : 301 —305
[14 ]  Kang J K, Kim S Y, Han YS , et al . Appl . Phys. Lett . , 2005 , 87(11) : art . no. 111904
[15 ]  Miwa K, Ohba N , Towata S , et al . Phys. Rev. B , 2004 , 69 (24) :art . no. 245120
[16 ]  Frankcombe TJ , Kroes GJ . Phys. Rev. B , 2006 , 73 (17) : art .no. 174302
[17 ]  Smith MB , Bass G E. J . Chem. Eng. Data , 1963 , 8 (3) : 342 —346
[18 ]  Frankcombe TJ , Kroes GJ , Züttel A. Chem. Phys. Lett . , 2005 ,405 (1P3) : 73 —78
[19 ]  Vajo J J , Skeith S L , Mertens F. J . Phys. Chem. B , 2005 , 109(9) : 3719 —3722
[20 ]  Vajo J J , Olson GL. Scr. Mater. , 2007 , 56 (10) : 829 —834
[21 ]  Pinkerton F E , Meyer MS , Meisner GP , et al . J . Phys. Chem. C ,2007 , 111 (35) : 12881 —12885
[22 ]  Barkhordarian G, Klassen T, Dornheim M, et al . J . Alloys Compd. , 2007 , 440 : L18 —L21
[23 ]  Fang Z Z, Wang P , Rufford T E , et al . Acta Mater. , 2008 , 56(20) : 6257 —6263
[24 ]  Ge Q F. J . Phys. Chem. A , 2004 , 108 (41) : 8682 —8690
[25 ]  Orimo S , Nakamori Y, Kitahara G, et al . J . Alloys Compd. , 2005 ,404/406 : 427 —430
[26 ]  Mauron P , Buchter F , Friedrichs O , et al . J . Phys. Chem. B ,2008 , 112 (3) : 906 —910
[27 ]  Friedrichs O , Buchter F , Borgschulte A , et al . Acta Mater. , 2008 ,56 (5) : 949 —954
[28 ]  Reilly J J , Wiswall R H. Inorg. Chem. , 1967 , 6 (12) : 2220 —2223
[29 ]  Barkhordarian G, Klassen T, Bormann R. DE 102004/061286 ,2004 ; WO 2006/063627A1 , 2004
[30 ]  Bêsenberg U , Doppiu S , Mosegaard L , et al . Acta Mater. , 2007 ,55 (11) : 3951 —3958
[31 ]  Vajo J J , Salguero T T, Gross A F , et al . J . Alloys Compd. , 2007 ,446/447 : 409 —414
[32 ]  Alapati S V , Johnson J K, Sholl D S. J . Phys. Chem. B , 2006 ,110 (17) : 8769 —8776
[33 ]  Alapati S V , Johnson J K, Sholl D S. J . Alloys Compd. , 2007 ,446/447 : 23 —27
[34 ]  Pinkerton F E , Meyer MS. J . Alloys Compd. , 2008 , 464 : L1 —L4
[35 ]  Purewal J , Hwang S J , Bowman R C , et al . J . Phys. Chem. C ,2008 , 112 (22) : 8481 —8485
[36 ]  Pinkerton F E , Meisner GP , Meyer MS , et al . J . Phys. Chem. B ,2005 , 109 (1) : 6 —8
[37 ]  Meisner G P , Scullin ML , Balogh M P , et al . J . Phys. Chem. B ,2006 , 110 (9) : 4186 —4192
[38 ]  Aoki M, Miwa K, Noritake T, et al . Appl . Phys. A , 2005 , 80(7) : 1409 —1412
[39 ]  Nakamori Y, Ninomiya A , Kitahara G, et al . J . Power Sources ,2006 , 155 (2) : 447 —455
[40 ]  Pinkerton F E , Meyer M S , Meisner GP , et al . J . Phys. Chem. B ,2006 , 110 (15) : 7967 —7974
[41 ]  Pinkerton F E , Meyer M S , Meisner G P , et al . J . Alloys Compd. ,2007 , 433 : 282 —291
[42 ]  Filinchuk Y E , Yvon K, Meisner G P , et al . Inorg. Chem. , 2006 ,45 (4) : 1433 —1435
[43 ]  Noritake T, Aoki M, Towata S , et al . Appl . Phys. A , 2006 , 83(2) : 277 —279
[44 ]  Yang J , Sudik A , Siegel D J , et al . Angew. Chem. Int . Ed. ,2008 , 47 (5) : 882 —887
[45 ]  Yang J , Sudik A , Siegel DJ , et al . J . Alloys Compd. , 2007 , 446/447 : 345 —349
[46 ]  Yu X B , Grant DM, Walker GS , et al . J . Phys. Chem. C , 2008 ,112 (29) : 11059 —11062
[47 ]  Kang X D , Wang P , Ma L P , et al . Appl . Phys. A , 2007 , 89 (4) :963 —966
[48 ]  Shi Q , Yu X B , Feidenhans’l R , et al . J . Phys. Chem. C , 2008 ,112 (46) : 18244 —18248
[49 ]  Orimo S , Fujii H , Ikeda K. Acta Mater. , 1997 , 45 (1) : 331 —341
[50 ]  Zaluska A , Zaluski L , Strêm-Olsen J O. Appl . Phys. A , 2001 , 72(2) : 157 —165
[51 ]  Wagemans R W P , van Lenthe J H , de Jongh P E , et al . J . Am.Chem. Soc. , 2005 , 127 (47) : 16675 —16680
[52 ]  Gross A F , Vajo J J , van Atta S L , et al . J . Phys. Chem. C ,2008 , 112 (14) : 5651 —5657
[53 ]  Zhang Y, Zhang W S , Wang A Q , et al . Int . J . Hydrogen Energy ,2007 , 32 (16) : 3976 —3980
[54 ]  Nakamori Y, Miwa K, Ninomiya A , et al . Phys. Rev. B , 2006 , 74(4) : art . no. 045126
[55 ]  Miwa K, Ohba N , Towata S , et al . J . Alloys Compd. , 2005 , 404/406 : 140 —143
[56 ]  Hagemann H , Longhini M, Kaminski J W, et al . J . Phys. Chem.A , 2008 , 112 (33) : 7551 —7555
[57 ]  Li H W, Orimo S , Nakamori Y, et al . J . Alloys Compd. , 2007 ,446/447 : 315 —318
[58 ]  Yin L C , Wang P , Fang Z Z, et al . Chem. Phys. Lett . , 2008 , 450(4/6) : 318 —321
[59 ]  Yin L C , Wang P , Kang X D , et al . Phys. Chem. Chem. Phys. ,2007 , 9 (12) : 1499 —1502
[60 ]  Au M, Jurgensen A. J . Phys. Chem. B , 2006 , 110 (13) : 7062 —7067
[61 ]  Au M, Jurgensen A , Zeigler K. J . Phys. Chem. B , 2006 , 110(51) : 26482 —26487
[62 ]  Mosegaard L , M?ller B , J?rgensen J E , et al . J . Phys. Chem. C ,2008 , 112 (4) : 1299 —1303
[63 ]  Kostka J , Lohstroh W, Fichtner M, et al . J . Phys. Chem. C ,2007 , 111 (37) : 14026 —14029
[64 ]  Fang Z Z, Kang X D , Dai H B , et al . Scr. Mater. , 2008 , 58 (10) :922 —925
[65 ]  Fang Z Z, Kang X D , Wang P , et al . J . Phys. Chem. C , 2008 ,112 (43) : 17023 —17029
[66 ]  Fan M Q , Sun L X, Zhang Y, et al . Int . J . Hydrogen Energy ,2008 , 33 (1) : 74 —80

[1] Qi Qi, Peizhu Xu, Zhidong Tian, Wei Sun, Yangjie Liu, Xiang Hu. Recent Advances of the Electrode Materials for Sodium-Ion Capacitors [J]. Progress in Chemistry, 2022, 34(9): 2051-2062.
[2] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[3] Zhao Ding, Weijie Yang, Kaifu Huo, Leon Shaw. Thermodynamics and Kinetics Tuning of LiBH4 for Hydrogen Storage [J]. Progress in Chemistry, 2021, 33(9): 1586-1597.
[4] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[5] Xuemei Wei, Zhanwei Ma, Xinyuan Mu, Jinzhi Lu, Bin Hu. Catalyst in Acetylene Carbonylation: From Homogeneous to Heterogeneous [J]. Progress in Chemistry, 2021, 33(2): 243-253.
[6] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[7] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[8] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[9] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[10] Tingting Gu, Jian Gu, Yu Zhang, Hua Ren. Metal Borohydride-Based System for Solid-State Hydrogen Storage [J]. Progress in Chemistry, 2020, 32(5): 665-686.
[11] Yun Zhao, Yuqiong Kang, Yuhong Jin, Li Wang, Guangyu Tian, Xiangming He. Silicon-Based and -Related Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2019, 31(4): 613-630.
[12] Chang Liu, Feng Wu, Qianqian Su, Weiping Qian. Template Preparation and Application in Biological Detection of Porous Noble Metal Nanostructures [J]. Progress in Chemistry, 2019, 31(10): 1396-1405.
[13] Changyuan Bao, Jiajun Han*, Jinning Cheng, Ruitao Zhang. Electrode Materials Blended with Graphene/Polyaniline for Supercapacitor [J]. Progress in Chemistry, 2018, 30(9): 1349-1363.
[14] Botian Li, Xing Wen, Liming Tang. Preparation of One-Dimensional Polymer-Inorganic Composite Nanomaterials [J]. Progress in Chemistry, 2018, 30(4): 338-348.
[15] Yun Zhao, Yuhong Jin, Li Wang, Guangyu Tian, Xiangming He. The Application of Self-Assembled Hierarchical Structures in Lithium-Ion Batteries [J]. Progress in Chemistry, 2018, 30(11): 1761-1769.