中文
Announcement
More
Progress in Chemistry 2009, Vol. 21 Issue (10): 2205-2211 Previous Articles   Next Articles

• Review •

The Application of in Situ FT-IR in the Research of Methane Oxidation

Yang Yang;  Zheng Wen;  Cheng Dangguo**;  Chen Fengqiu;  Zhan Xiaoli   

  1. (Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, China)
  • Received: Revised: Online: Published:
  • Contact: Cheng Dangguo E-mail:dgcheng@zju.edu.cn
  • Supported by:

    National Natural Science Foundation of China

PDF ( 1344 ) Cited
Export

EndNote

Ris

BibTeX

The progress of in-situ FT-IR in the research of methane oxidation is reviewed. The use of in situ FT-IR technology in oxidative coupling of methane (OCM) and partial oxidation of methane (POM) in recent years are introduced. The different oxygen species on OCM catalysts and the effects of experimental conditions on POM reaction mechanism are discussed. The studies of identifying and assigning unambiguous IR band are important and necessary, which will make the FT-IR technology have more wide applications.

Contents
1 Introduction
2 Application of in situ FT-IR in the research of OCM reaction mechanism
3 Application of in situ FT-IR in the research of POM reaction mechanism
4 Conclusion

CLC Number: 

[ 1 ]  Litlle L H. Infrared Spectra of Adsorbed Species. London: Academic Press , 1966
[ 2 ]  Keller G E , Bhasin MM. J . Catal . , 1982 , 73 : 9 —19
[ 3 ]  Lunsford J H. Angew. Chem. Int . Ed. Engl . , 1995 , 34 : 970 —980
[ 4 ]  Voskresenskya E N , Rogulev V G, Anshits A G. Catal . Rev. Sci .Eng. , 1995 , 37 : 101 —143
[ 5 ]  Amenomiya Y, Birss V I , Goledzinowski M, et al . Catal . Rev. Sci .Eng. , 1990 , 32 : 163 —227
[ 6 ]  Maitra A M. Appl . Catal . A , 1993 , 104 : 11 —59
[ 7 ]  Driscoll D J , Martir W, Wang J X, et al . J . Am. Chem. Soc. ,1985 , 107 : 58 —63
[ 8 ]  Miro E , Santamaria J , Wolf E E. J . Catal . , 1900 , 124 : 451 —464
[ 9 ]  Lin C H , Campbell KD , Wang J X, et al . J . Phys. Chem. , 1986 ,90 : 534 —537
[10 ]  Ito T, Wang J X, Lin C H , et al . J . Am. Chem. Soc. , 1985 ,107 : 5062 —5068
[11 ]  Miro E , Santamaria J , Wolf E E. J . Catal . , 1990 , 124 : 451 —464
[12 ]  Lunsford J H , Yang XM, Haller K, et al . J . Phys. Chem. , 1993 ,97 (51) : 13810 —13813
[13 ]  Osada Y, Koike S , Fukushima T, et al . Appl . Catal . , 1990 , 59(1) : 59 —74
[14 ]  WangJ X, Lunsford J H. J . Phys. Chem. , 1986 , 90 ( 17 ) :3890 —3891
[15 ]  Liu Y D , Zhang H B , Lin G D , et al . J . Chem. Soc. Chem.Commun. , 1994 , (16) : 1871 —1872
[16 ]  Mashta F A , Sheppard N , Lorenzelli V , Busca G. J . Chem. Soc.Faraday. Trans. 1 , 1982 , 78 : 979 —989
[17 ]  林景治(Lin J Z) , 杨得信(Yang D X) , 顾靖芳( Gu J F) 等.分子催化(Journal of Molecular Catalysis) , 1995 , 9 (6) : 193 —200
[18 ]  翁维正(Weng W Z) , 龙瑞强(Long R Q) , 陈明树(Chen M S) ,万惠霖(Wan H L ) . 厦门大学学报( Journal of Xiamen University) , 2001 , 40 (2) : 349 —359
[19 ]  魏光(Wei G) , 黄遵楠(Huang Z N) , 洪琦(Hong Q) 等. 化学物理学报(Chinese Journal of Chemical Physics) , 1998 , 11 (5) :471 —476
[20 ]  龙瑞强(Long R Q) , 万惠霖(Wan H L) , 赖华龙(Lai H L) , 蔡启瑞(Tsai K R) . 高等学校化学学报(Chem. J . Chin. Univ. ) ,1995 , 16 (11) : 1796 —1797
[21 ]  Wang L H , Yi X D , Weng W Z, et al . Catalysis Today , 2008 ,131 : 135 —139
[22 ]  王丽华(Wang L H) , 伊晓东(Yi X D) , 翁维正(Weng W Z) ,万惠霖(Wan H L) . 催化学报(Chinese Journal of Catalysis) ,2007 , 28 (9) : 789 —793
[23 ]  Brecher C , Halford R S. J . Chem. Phys. , 1961 , 35 : 1109 —1117
[24 ]  Klingenberg B , Vannice M A. Chem. Mater. , 1996 , 8 ( 12 ) :2755 —2768
[25 ]  季生福(Ji S F) , 李树本(Li S B) , 寇元(Kou Y) 等. 分析测试技术与仪器(Analysis and Testing Technology and Instruments) ,1997 , (4) : 204 —209
[26 ]  季生福(Ji S F) , 李树本(Li S B) , 薛锦珍(Xue J Z) 等. 分子催化(Journal of Molecular Catalysis) , 2000 , 14 (2) : 107 —110
[27 ]  余林(Yu L) , 徐奕德(Xu YD) , 郭燮贤(Guo X X) . 物理化学学报(Acta Phys. Chim. Sin. ) , 1995 , 11 (10) : 902 —906
[28 ]  Prettre M, Eichner C , Perrin M. Trans. Faraday Soc. , 1946 , 42 :335 —340
[29 ]  Vernon P D F , Green ML H , Cheetham A K, et al . Catal . Lett . ,1990 , 6 : 181 —186
[30 ]  Dissanayake D , Rosynek M P , Kharas K C C , et al . J . Catal . ,1991 , 132 : 117 —127
[31 ]  Hickman D A , Schmidt L D. J . Catal . , 1992 , 138 : 267 —282
[32 ]  Hickman D A , Haupfear E A , Schmidt L D. Catal . Lett . , 1993 ,17 : 223 —237
[33 ]  Mallens E P J , Hoebink J H B J , Marin G B. J . Catal . , 1997 ,167 : 43 —56
[34 ]  Hofstad H K, Hoebink J H B J , Holmen A , et al . Catal . Today ,1998 , 40 : 157 —170
[35 ]  Buyevskaya O V , Walter K, Wolf D , et al . Catal . Lett . , 1996 ,38 : 81 —88
[36 ]  Cao C D , Bourane A , Schlup J R , Hohn K L. Appl . Catal . A:General , 2008 , 344 : 78 —87
[37 ]  Chen Y Q , Hu C W, Gong M C , et al . Journal of Molecular Catalysis A: Chemical , 2000 , 152 : 237 —244
[38 ]  Wu T H , Lin D M, Wu Y, et al . Journal of Natural Gas Chemistry ,2007 , 16 : 316 —321
[39 ]  Li Z H , Xu G H , Hoflund GB. Fuel Processing Technology , 2003 ,84 : 1 —11
[40 ]  万惠霖(Wan H L) , 翁维正(Weng W Z) . 复旦学报(Journal of Fudan University) , 2002 , 41 (3) : 243 —249
[41 ]  翁维正(Weng W Z) , 罗春容(Luo C R) , 李建梅(Li J M) 等.化学学报(Acta Chimica Sinica) , 2004 , 62 (18) : 1853 —1857

[1] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[2] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[3] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[4] Fenya Guo, Hongwei Li, Mengzhe Zhou, Zhengqi Xu, Yueqing Zheng, Tingting Li. Electroreduction of Nitrogen to Ammonia Catalyzed by Non-Noble Metal Catalysts under Ambient Conditions [J]. Progress in Chemistry, 2020, 32(1): 33-45.
[5] Ping Yang, Minjie Liu, Hao Zhang, Wenting Guo, Chaoyang Lv, Di Liu. Reductive Amination of Nitroarenes and Alcohols: Catalyst and Catalytic Mechanism [J]. Progress in Chemistry, 2020, 32(1): 72-83.
[6] Zhengying Wu, Xie Liu, Jinsong Liu, Shouqing Liu, Zhenlong Zha, Zhigang Chen. Molybdenum Disulfide Based Composites and Their Photocatalytic Degradation and Hydrogen Evolution Properties [J]. Progress in Chemistry, 2019, 31(8): 1086-1102.
[7] Wenjun Zhao, Jiangzhou Qin, Zhifan Yin, Xia Hu, Baojun Liu. 2D MXenes for Photocatalysis* [J]. Progress in Chemistry, 2019, 31(12): 1729-1736.
[8] Jiwei Lv, Xianquan Ao*, Qianlin Chen, Yan Xie, Yang Cao, Jifang Zhang. Disposable Catalysts for Coal Gasification [J]. Progress in Chemistry, 2018, 30(9): 1455-1462.
[9] Niu Fanfan, Nie Changjun, Chen Yong, Sun Xiaoling. Asymmetric Catalytic Epoxidation of Unfunctionalized Olefins [J]. Progress in Chemistry, 2014, 26(12): 1942-1961.
[10] Yin Qiaoqiao, Qiao Ru, Tong Guoxiu. Preparation and Photocatalytic Application of Ion-Doped ZnO Functional Nanomaterials [J]. Progress in Chemistry, 2014, 26(10): 1619-1632.
[11] Xie Yingjuan, Wu Zhijiao, Zhang Xiao, Ma Peijun, Piao Lingyu. Synthesis and Photocatalytic Mechanisms of the Mixed-Phase TiO2 Photocatalysts [J]. Progress in Chemistry, 2014, 26(07): 1120-1131.
[12] Zhang Qian, Zhou Ying, Zhang Zhao, He Yun, Chen Yongdong, Lin Yuanhua. Plasmonic Photocatalyst [J]. Progress in Chemistry, 2013, 25(12): 2020-2027.
[13] Yang Zhen*. Fundamentals of Biocatalysis in Organic Solvents [J]. Progress in Chemistry, 2005, 17(05): 924-930.
[14] Dai Yan,Cheng Peng. The Research Progress of Ni-containing Enzymes and Model Compounds [J]. Progress in Chemistry, 2002, 14(01): 47-.
[15] Wang Lihua,Chen Shouzheng,Liao Daiwei,Cai Qirui. Advances in the Catalysts and Mechanism for Ammonia Synthesis [J]. Progress in Chemistry, 1999, 11(04): 376-.