中文
Announcement
More
Progress in Chemistry 2009, Vol. 21 Issue (10): 2060-2066 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

Template-Directed Method Synthesis of Porous Materials for Lithium-Ion Batteries

Liang Feng;   Dai Yongnian;   Yao Yaochun**   

  1. (National Engineering Laboratory of Vacuum Metallurgy, Faculty of Materials and Metallurgical Engineering, Kunming University of Science and Technology, Kunming 650093, China)
  • Received: Revised: Online: Published:
  • Contact: Yao Yaochun E-mail:yaochunyao@gmail.com
PDF ( 2135 ) Cited
Export

EndNote

Ris

BibTeX

Template-direct method provides a new approach of synthesizing porous materials for lithium-ion batteries and has currently become one of the most popular topics in the materials preparation. The latest progress in template-direct method synthesis lithium-ion batteries materials is reviewed in details. The principle, classification and procedure of this method are described. Finally, the characteristics and some questions of porous materials for lithium-ion batteries are discussed. The research trends of this field are brought forward.

Contents
1 Introduction
2 The outline of template-directed method
3 Template-directed method synthesis of cathode materials for lithium-ion batteries
3.1 Template-directed method synthesis of lithium cobalt oxide
3.2 Template-directed method synthesis of lithium manganese oxide
3.3 Template-directed method synthesis of lithium iron phosphate
3.4 Template-directed method synthesis of other cathode materials
4 Template-directed method synthesis of anode materials for lithium-ion batteries
4.1 Template-directed method synthesis of carbon
4.2 Template-directed method synthesis of titanium oxide
4.3 Template-directed method synthesis of tin oxide
4.4 Template-directed method synthesis of other anode materials
5 Conclusion

CLC Number: 

[ 1 ]  Huo Q S , Margolese D I , Ciesla V , et al . Nature , 1994 , 368 :317 —321
[ 2 ]  Beck J S , Vartuli J C , Roth J , et al . J . Am. Chem. Soc. , 1992 ,114 : 10834 —10843
[ 3 ]  王秀丽(Wang X L) , 曾永飞(Zeng Y F) , 卜显和(Bu X H) . 化学通报(Chemistry) , 2005 , 10 : 723 —730
[ 4 ]  Martin C R. Science , 1994 , 266 : 1961 —1966
[ 5 ]  Braun P V , Qsenar P , Stupp S Z, et al . Nature , 1996 , 380 : 325 —328
[ 6 ]  Cheng F Y, Tao ZL , Liang J , Chen J . Chem. Mater. , 2008 , 20 :667 —681
[ 7 ]  曲凤玉(Qu F Y) , 朱广山( Zhu G S) . 高等学校化学学报(Chem. J . Chinese Universities) , 2004 , 25 (12) : 2195 —2198
[ 8 ]  Hitz S , Prins R. J . Catal . , 1997 , 168 : 194 —206
[ 9 ]  Zhao YJ , Xia D G, Li Y, Yu C Y. Electrochemical and Solid-State Letters , 2008 , 11 (3) : A30 —A33
[10 ]  Ergang N S , Lytle J C , Yan H W, Stein A. J . Electrochemical Society , 2005 , 152 (10) : A1989 —A1995
[11 ]  Jiao F , Shaju KM, Bruce P G. Angew. Chem. Int . Ed. , 2005 ,44 : 6550 —6553
[12 ]  Luo J Y, Wang Y G, Xiong HM, Xia Y Y. Chem. Mater. , 2007 ,19 : 4791 —4795
[13 ]  Li N C , Patrissi C J , Che G, Martin C R. J . Electrochemical Society , 2000 , 147 (6) : 2044 —2049
[14 ]  Nishizawa M, Mukai K, Kuwabata S , Martin C R , Yoneyama H. J .Electrochemical Society , 1997 , 144 (6) : 1923 —1927
[15 ]  Luo J Y, Cheng L , Xia Y Y. Electrochemistry Communications ,2007 , 9 : 1404 —1409
[16 ]  Zhou Y K, Shen C M, Huang J , Li H L. Materials Science and Engineering , 2002 , B95 : 77 —82
[17 ]  Sides C R , Croce F , Young V Y, Martin , C R , Scrosati B.Electrochemical and Solid2State Letters , 2005 , 8 (9) : A484 —A487
[18 ]  Liu X H , Wang J Q , Zhang J Y, Yang S R. Chinese Journal of Chemical Physics , 2006 , 19 (6) : 530 —534
[19 ]  Lim S Y, Yoon C S , Cho J . Chem. Mater. , 2008 , 20 : 4560 —4564
[20 ]  Liu P , Lee S H , Tracy C E , et al . Adv. Mater. , 2002 , 14 (1) :27 —30
[21 ]  Jiao F , Bruce P G. Adv. Mater. , 2007 , 19 : 657 —660
[22 ]  Shi Z C , Li Y X, Ye W L , Yang Y. Electrochemical and Solid-State Letters , 2005 , 8 (8) : A396 —A399
[23 ]  Shi Z C , Attia A , Ye W L , Wang Q , Li Y X, Yang Y.Electrochimica Acta , 2008 , 53 : 2665 —2673
[24 ]  Yang S T, Yue H Y, Yin Y H , Yang J X, Yang W G.Electrochimica Acta , 2006 , 51 : 4971 —4976
[25 ]  Wang Q , Li J H. J . Phys. Chem. C , 2007 , 111 (4) : 1675 —1682
[26 ]  Li H Q , Liu R L , Zhao D Y, et al . Carbon , 2007 , 45 : 2628 —2635
[27 ]  Lee KT, Lytle CJ , Ergang N S , et al . Adv. Funct . Mater. , 2005 ,15 (4) : 547 —556
[28 ]  Zhou H S , Zhu S M, Hibino M, et al . Adv. Mater. , 2003 , 15 :2107 —2111
[29 ]  Hu Y S , Adelhelm P , Smarsly B M, et al . Adv. Funct . Mater. ,2007 , 17 : 1873 —1878
[30 ]  Wang KX, Wei MD , Morris MA , et al . Adv. Mater. , 2007 , 19 :3016 —3020
[31 ]  Fu L J , Zhang T, Cao Q , Zhang H P , Wu Y P. Electrochemistry Communications , 2007 , 9 : 2140 —2144
[32 ]  Zhou H S , Li D L , Hibino M, Honma I. Angew. Chem. Int . Ed. ,2005 , 44 : 797 —802
[33 ]  Kim Y, Cho J . Mater. Chem. , 2008 , 18 : 771 —775
[34 ]  Yang H X, Qian J F , Chen Z X, et al . J . Phys. Chem. C , 2007 ,111 : 14067 —14071
[35 ]  Wen Z H , Wang Q , Zhang Q , et al . Adv. Funct . Mater. , 2007 ,17 : 2772 —2778
[36 ]  Du N , Zhang H , Chen B , et al . Adv. Mater. , 2007 , 19 : 4505 —4509
[37 ]  Kim H , Cho J . Chem. Mater. , 2008 , 20 : 1679 —1681
[38 ]  Doi T, Fukudome H , Yamaki J I , et al . J . Power Sources , 2007 ,174 : 779 —783
[39 ]  Gaberscek M, Kuzma M, Jamnik J . Phys. Chem. Chem. Phys. ,2007 , 9 : 1815 —1820

[1] Liu Jun, Ye Daiyong. Research Progress of Antiviral Coatings [J]. Progress in Chemistry, 2023, 35(3): 496-508.
[2] Guohui Zhu, Hongxian Huan, Dawei Yu, Xueyi Guo, Qinghua Tian. Selective Recovery of Lithium from Spent Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(2): 287-301.
[3] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[4] Jie Wang, Yaqing Feng, Bao Zhang. MOF-COF Hybrid Frameworks Materials [J]. Progress in Chemistry, 2022, 34(6): 1308-1320.
[5] Bo Tang, Wei Wang, Aiqin Luo. New Porous Materials Used as Chiral Stationary Phase for Chromatography [J]. Progress in Chemistry, 2022, 34(2): 328-341.
[6] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[7] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[8] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[9] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[10] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[11] Dan Zhao, Changtao Wang, Lei Su, Xueji Zhang. Application of Fluorescence Nanomaterials in Pathogenic Bacteria Detection [J]. Progress in Chemistry, 2021, 33(9): 1482-1495.
[12] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[13] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[14] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[15] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.