中文
Announcement
More
Progress in Chemistry 2009, Vol. 21 Issue (09): 1945-1953 Previous Articles   Next Articles

• Review •

MAlH4(M=Li,Na ) Materials for Hydrogen Storage

Tao Zhanliang**|Chen Jun   

  1. (Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071, China)
  • Received: Revised: Online: Published:
  • Contact: Tao Zhanliang E-mail:taozhl@nankai.edu.cn
PDF ( 1876 ) Cited
Export

EndNote

Ris

BibTeX

Hydrogen is an environmentally cleaner source of energy, hopeful to replace carbon economy. The availability of feasible methods for hydrogen storage is one of the keys for large scale application. In recent years, solid materials most actively investigated can be regarded for their high hydrogen storage capacity and good reversibility. As a result, many new hydrogen storage materials have been developed. Among them, one of the most promising systems at present is metal complex hydride, which MAlH4(M=Li, Na) as a typical alanate. In this paper, the recent studies on MAlH4(M=Li, Na) as storage hydrogen materials are reviewed. The hydrogenation/dehydrogenation reaction, hydrogen storage properties, reaction mechanisms, theoretical calculations and remaining problems are discussed. And the development trend of MAlH4(M=Li, Na) is also introduced.

Contents
1 Introduction
2 Properties and structures of MAlH4 (M=Li,Na)
3 De-/rehydrogenation of undoped MAlH4 (M=Li,Na)
4 De-/rehydrogenation of doped MAlH4 (M=Li,Na)
4.1 Dopants and doping methods of MAlH4 (M=Li,Na)
4.2 Catalysis mechanism of doped MAlH4 (M=Li,Na)
4.3 Theoretical investigation of MAlH4 (M=Li,Na)
4.4 Kinetic properties of doped NaAlH4
5 Summary and outlook

CLC Number: 

[ 1 ]  Schlapbach L , Zuttel A. Nature , 2001 , 414 : 353 —358
[ 2 ]  孙大林(Sun D L) , 陈国荣(Chen G R) , 江建军(Jiang J J )等. 材料导报(Materials Review) , 2004 , 18 : 72 —75
[ 3 ]  许炜(Xu W) , 陶占良(Tao Z L) , 陈军(Chen J ) . 化学进展(Progress in Chemistry) , 2006 , 18 : 200 —210
[ 4 ]  Orimo S I , Nakamori Y, Eliseo J R , et al . Chem. Rev. , 2007 ,107 : 4111 —4132
[ 5 ]  刘淑生(Liu S S) , 孙立贤(Sun L X) , 徐芬(Xu F) . 化学进展(Progress in Chemistry) , 2008 , 20 : 280 —287
[ 6 ]  周理( Zhou L) . 世界科技研究与发展(World Sci .2Tech.R&D) , 2006 , 28 : 17 —32
[ 7 ]  杨勇(Yang Y) , 沈泓滢(Shen H Y) , 邢航(Xing H) 等. 化学进展(Progress in Chemistry) , 2006 , 18 : 648 —656
[ 8 ]  Struzhkin V V , Millitzer B , Mao WL , et al . Chem. Rev. , 2007 ,107 : 4133 —4151
[ 9 ]  Seayad A M, Antonelli D M. Adv. Mater. , 2004 , 16 : 765 —777
[10 ]  Van den Berg A WC , Arean C O. Chem. Comm. , 2008 , 668 —681
[11 ]  Bogdanovic B , Schwickardi M. J . Alloys Compd. 1997 , 253/254 :1 —9
[12 ]  Hauback B C , Brinks H W, Jensen CM, et al . J . Alloys Compd. ,2003 , 358 : 142 —145
[13 ]  Garner W E , Haycock E W. Proc. Roy. Soc. London A , 1952 ,211 : 335 —351
[14 ]  Clasen H. Angew. Chem. , 1961 , 73 : 322 —331
[15 ]  Ashby E C , Brendel G R , Redman H E. Inorg. Chem. , 1963 , 2 :499 —504
[16 ]  Wang J , Ebner A D , Ritter J A. J . Am. Chem. Soc. , 2006 , 128 ,5949 —5954
[17 ]  Andreasen A , Vegge T, Pedersen A S. J . Solid State Chem. , 2005 ,178 : 3672 —3678
[18 ]  孙泰(Sun T) , 黄存可(Huang C K) , 董汉武(Dong H W) 等.西安交通大学学报(Journal of Xi′an Jiaotong University) , 2008 ,42 : 256 —260
[19 ]  Chen J , Kuriyama N , Xu Q , et al . J . Phys. Chem. B , 2001 , 105 :11214 —11220
[20 ]  Jensen C M, Zidan R , Mariels N , et al . Int . J . Hydrogen Energy ,1999 , 24 : 461 —465
[21 ]  Fichtner M, Fuhr O , Kircher O , Rothe J . Nanotechnology , 2003 ,14 : 778 —785
[22 ]  Wang P , Kang X D , Cheng H M. J . Phys. Chem. B , 2005 , 109 :20131 —20136
[23 ]  Kang X D , Wang P , Cheng M H. J . Phys. Chem. C , 2007 , 111 :4879 —4884
[24 ]  肖学章(Xiao X Z) , 陈立新(Chen L X) , 王新华(Wang X H)等. 物理化学学报(Acta Phys.2Chim. Sin. ) , 2006 , 22 : 1511 —1515
[25 ]  Bogdanovic B , Brand R A , Marjanovic A , et al . J . Alloys Compd. ,2000 , 302 : 36 —58
[26 ]  Balde C P , Hereijgers B P C , Bitter J H , de Jong K P. Angew.Chem. Int . Ed. , 2006 , 45 : 3501 —3503
[27 ]  Bogdanovic B , Felderhoff M, Pommerin A , et al . Adv. Mater. ,2006 , 18 : 1198 —1201
[28 ]  De Dompablo M E A Y, Ceder G. J . Alloys Compd. , 2004 , 364 :6 —12
[29 ]  Bellosta von Colbe J M, Bogdanovic’ B , Felderhoff M, et al . J .Alloys Compd. , 2004 , 370 : 104 —109
[30 ]  Majzoub E H , Gross K J . J . Alloys Compd. , 2003 , 356P357 :363 —367
[31 ]  Weidenthaler C , Pommerin A , Felderhoff M, et al . Phys. Chem.Chem. Phys. , 2003 , 5 : 5149 —5153
[32 ]  Gross KJ , Majzoub E H , Spangler S W. J . Alloys Compd. , 2003 ,356P357 : 423 —428
[33 ]  Balema V P , Balema L. Phys. Chem. Chem. Phys. , 2005 , 7 :1310 —1314
[34 ]  Sun D L , Kiyobayashi T, Takeshita H T, et al . J . Alloys Compd. ,2002 , 337 : L8 —L11
[35 ]  Inigucz J , Yildirim T, Udovic TJ , et al . Phys. Rev. B , 2004 , 70 :art . no. 060101
[36 ]  Araujo C M, Ahuja R , Guillen J MO , Jena P. Appl . Phys. Lett . ,2005 , 86 : art . no. 251913
[37 ]  Gunaydin H , Houk K N , Ozolin ′íV. P. Natl . Acad. Sci . USA. ,2008 , 105 : 3673 —3677
[38 ]  Yin L C , Wang P , Kang X D , et al . Phys. Chem. Chem. Phys. ,2007 , 9 : 1499 —1502
[39 ]  Kang J K, Lee J Y, Muller R P , et al . J . Chem. Phys. , 2004 ,121 : 10623 —10633
[40 ]  方方(Fang F) , 张晶(Zhang J ) , 朱健(Zhu J ) 等. 金属学报(Acta Metallurgica Sinica) , 2007 , 43 : 96 —98
[41 ]  Kircher O , Fichtner M. J . Appl . Phys. , 2004 , 95 : 7748 —7753
[42 ]  Sandrock G, Gross K, Thomas G. J . Alloys Compd. , 2002 , 339 :299 —308
[43 ]  Kiyobayashi T, Srinivasan S S , Sun D L , Jensen C M. J . Phys.Chem. A , 2003 , 107 : 7671 —7674
[44 ]  Lovvik O M, Swang O. J . Alloys Compd. , 2005 , 404P406 : 757 —761
[45 ]  Tang X, Opalka SM, Laube B L , et al . J . Alloys Compd. , 2007 ,446P447 : 228 —231
[46 ]  Opalka S M, L? vvik O M, Brinks H W, et al . Inorg. Chem. ,2007 , 46 : 1401 —1409

[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[7] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[8] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[9] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[10] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[13] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[14] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[15] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.