中文
Announcement
More
Progress in Chemistry 2009, Vol. 21 Issue (04): 771-776 Previous Articles   Next Articles

• Review •

Bionic Interaction of Metalloporphyrins with Various Gaseous Molecules

Zhang Jianbin1;    Zhang Pengyan2 ;   Chen Guohua2;   Han Fang2;   Wei Xionghui1*   

  1. (1. Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; 2. College of Chemical Engineering, Inner Mongolia University of Technology, Huhhot 010051, China)
  • Received: Revised: Online: Published:
  • Contact: Wei Xionghui E-mail:xhwei@pku.edu.cn
PDF ( 2435 ) Cited
Export

EndNote

Ris

BibTeX

Metalloporphyrin chemistry is an important branch in modern chemical field. In nature, the core structure of chlorophyll, haemachrome, cytochrome, and other biological macromolecules are made up of various met-alloporphyrins (MP). The MPs can participate in a series of important processes in the organism, especially in the transfer processes of messenger gaseous molecules. The bionic interactions of various MPs with O2, COx, NOx and H2S are summarized in this paper. The interactions are very important for the fixation and transfer processes of these gases in body, for the industrial processes, and for the bio-simulated processes. In the near future, with the rapid development in the synthesizing processes and the deeper researches of various characters of new MPs, the natural and man-made MPs will get more development in biomedicine, power sources, analytical chemistry, synthesized catalysis, and the transfer and fixation processes of gaseous molecules.

Contents
1 Introduction
2 Interaction of MP with O2
3 Interaction of MP with COx
4 Interaction of MP with NOx
5 Interaction of MP with H2S
6 Summary

CLC Number: 

[ 1 ]  刘育(Liu Y) , 尤长城(You C C) , 张衡益(Zhang H Y) . 超分子化学———合成受体的分子识别与组装( Supramolecular Chemistry Molecular Recognition and Assembly of Synthetic Receptors) . 天津: 南开大学出版社(Tianjin : Nan Kai Technology Press) , 2001
[ 2 ]  Koerner R , Olmstead M M, Ozarowski A , et al . J . Am. Chem.Soc. , 1998 , 120 : 1274 —1284
[ 3 ]  Zheng W Q , Shan N , Yu L X, et al . Dyes and Pigments , 2008 ,77 : 153 —157
[ 4 ]  Kini A D , Washington J , Kubiak C P , et al . Inorg. Chem. , 1996 ,35 : 6904 —6906
[ 5 ]  Prein M, Adam W. Angew. Chem. Int . Ed. , 1996 , 35 : 477 —494
[ 6 ]  Scherlis D A , Estrin D A. J . Am. Chem. Soc. , 2001 , 123 :8436 —8437
[ 7 ]  Kovacs J A. Science , 2003 , 299 : 1024 —1025
[ 8 ]  Isogai Y, Izuka T, Shiro Y. J . Biol . Chem. , 1995 , 270 : 7853 —7857
[ 9 ]  Collman J P , Brauman J I , Rose E , et al . Proc. Natl . Acad. Sci .USA , 1978 , 75 : 1052 —1055
[10 ]  Nakagawa A , Komatsu T, Huang Y, et al . Bioconjugate Chem. ,2007 , 18 : 1673 —1677
[11 ]  Collman J P , Shiryaeva IM, Boulatov R. Inorg. Chem. , 2003 , 42 :4807 —4809
[12 ]  Angelis F D , Car R , Spiro T G. J . Am. Chem. Soc. , 2003 , 125 :1570 —1571
[13 ]  Collman J P , Fu L , Herrmann P C , Zhang X M. Science , 1997 ,275 : 949 —951
[14 ]  Collman J P , Yan YL , Eberspacher T, et al . Inorg. Chem. , 2005 ,44 : 9628 —9630
[15 ]  Yuasa M, Steiger B , Anson F C. J . Porphyr. Phthalocya. , 1997 ,1 : 181 —188
[16 ]  Liu H S , Zhang L , Zhang J J , et al . J . Power Sources , 2006 , 161 :743 —752
[17 ]  Guo C C , Liu Q , Wang X T, et al . Appl . Catal . A-Gen. , 2005 ,282 : 55 —59
[18 ]  Tsuchida E , Komatsu T, Fuhrhop J H. Polym. Adv. Technol . ,1998 , 9 : 569 —578
[19 ]  Aronoff S , Mackinney G. J . Am. Chem. Soc. , 1943 , 65 ( 5) :965 —958
[20 ]  张鹏燕(Zhang P Y) , 张建斌(Zhang J B) , 魏雄辉(Wei X H) 等.物理化学学报(Acta Phys.2Chim. Sin. ) , 2008 , 24 (1) : 143 —146
[21 ]  Mitra S , Foster T H. Biophys. J . , 2000 , 78 : 2597 —2605
[22 ]  Itoh T, Asada H , Tobioka K, et al . Bioconjugate Chem. , 2000 , 11(1) : 8 —13
[23 ]  Sellers P J , Dickinson R E , Randall D A , et al . Science , 1997 ,275 : 502 —509
[24 ]  Leffler C W, Parfenova H , Jaggar J H , et al . J . Appl . Physiol . ,2006 , 100 : 1065 —1076
[25 ]  Garvajal J A , Germain A M, Huidobrotoro J P , et al . J . Cell Physio. , 2000 , 184 : 409 —420
[26 ]  Lo W C , Jan C R , Chiang H T, et al . Hypertension , 2000 , 35 :1253 —1257
[27 ]  Ingi T, Cheng J , Ronnett GV. Neuron , 1996 , 16 (4) : 835 —842
[28 ]  Yoshikawa S , Choc M G, O’toole M C , et al . J . Biol . Chem. ,1977 , 252 (15) : 5498 —5508
[29 ]  Hammouche M, Lexa D , Momenteau M, et al . J . Am. Chem.Soc. , 1991 , 113 : 8455 —8466
[30 ]  Bernard C , Mest YL , Gisselbrecht J P. Inorg. Chem. , 1998 , 37 :181 —190
[31 ]  Larsen R W, Murphy J , Findsen E W. Inorg. Chem. , 1996 , 35 :6254 —6260
[32 ]  Koshland D E. Science , 1992 , 258 : 1861
[33 ]  Liu J , Waalkes M P. Toxicology , 2005 , 208 : 289 —297
[34 ]  Schmidt H H , Walter U. Cell , 1994 , 78 : 919 —925
[35 ]  Laverman L E , Ford P C. J . Am. Chem. Soc. , 2001 , 123 :11614 —11622
[36 ]  刘自兵(Liu Z B) , 冯清(Feng Q) , 夏淑贞(Xia S Z) 等. 应用化学(Chinese J . Appl . Chem. ) , 2006 , 23 (5) : 508 —513
[37 ]  Rose E J , Hoffman B. J . Am. Chem. Soc. , 1983 , 105 : 2866 —2873
[38 ]  Hoshino M, Arai S , Yamaji M, et al . J . Phys. Chem. , 1986 , 90 :2109 —2111
[39 ]  Jongeward KA , Magde D , Taube DJ , et al . J . Am. Chem. Soc. ,1988 , 110 : 380 —387
[40 ]  Bohle D S , Hung C H. J . Am. Chem. Soc. , 1995 , 117 : 9584 —9585
[41 ]  Yu A E , Hu S , Spiro T G, et al . J . Am. Chem. Soc. , 1994 , 116 :4117 —4118
[42 ]  Burstyn J N , Yu A E , Dierks E A , et al . Biochem. , 1995 , 34 :5896 —5903
[43 ]  Kurtikyan T S , Hovhannisyan A A , Hakobyan M E , et al . J . Am.Chem. Soc. , 2007 , 129 : 3576 —3585
[44 ]  Nasri H , Ellison M K, Krebs C , et al . J . Am. Chem. Soc. , 2000 ,122 : 10795 —10804
[45 ]  Praneeth V K K, Haupt E , Lehnert N. J . Inorg. Biochem. , 2005 ,99 : 940 —948
[46 ]  Lorkovic L M, Miranda KM, Lee B , et al . J . Am. Chem. Soc. ,1998 , 120 : 11674 —11683
[47 ]  Miranda KM, Bu X, Lorkovic I , et al . Inorg. Chem. , 1997 , 36 :4838 —4848
[48 ]  Kadish K M, Adamian V A , Caemelbecke E V , et al . Inorg.Chem. , 1996 , 35 (5) : 1343 —1348
[49 ]  Bohle D S , Goodson P A , Smit B D. Polyhedron , 1996 , 15 :3147 —3150
[50 ]  Yi GB , Khan M A , Richter-Addo GB. Inorg. Chem. , 1996 , 35 :3453 —3454
[51 ]  Martirosyan G G, Azizyan A S , Kurtikyan T S , et al . Inorg.Chem. , 2006 , 45 : 4079 —4087
[52 ]  Hoshino M, Nagashima Y, Seki H , et al . Inorg. Chem. , 1998 , 37 :2464 —2469
[53 ]  Suslick K, Watson R. Inorg. Chem. , 1991 , 30 : 912 —919
[54 ]  Ford P C , Wecksler S. Coordin. Chem. Rev. , 2005 , 249 : 1382 —1395
[55 ]  Bolognesi M, Rosano C , Losso R , et al . Biophys. J . , 1999 , 77 :1093 —1099
[56 ]  Kraus D W, Wittenberg J B. J . Biol . Chem. , 1990 , 265 : 16042 —16053
[57 ]  Rizzi M, Wittenberg J B , Coda A , et al . J . Mol . Biol . , 1994 ,244 : 86 —99
[58 ]  Cerda J , Echevarria Y, Morales E , et al . Biospectroscopy , 1999 ,5 : 289 —301
[59 ]  Fernandez-Alberti S , Bacelo D E , Binning R C , et al . Biophys. J . ,2006 , 91 : 1698 —1709
[60 ]  Goifman A , Gun J , Gitis V , et al . Appl . Catal . B : Environ. ,2004 , 54 : 225 —253

[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[3] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[4] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[5] Yizhou Yang, Bingquan Peng, Xiaoling Lei, Haiping Fang. Aromatic Rings in Ion Soultions: Two-Dimensional Crystals of Unconventional Stoichiometries and Ferromagnetism [J]. Progress in Chemistry, 2022, 34(7): 1524-1536.
[6] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[7] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[8] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[9] Nan Wang, Yuqi Zhou, Ziye Jiang, Tianyu Lv, Jin Lin, Zhou Song, Lihua Zhu. Synergistically Consecutive Reduction and Oxidation of Per- and Poly-Halogenated Organic Pollutants [J]. Progress in Chemistry, 2022, 34(12): 2667-2685.
[10] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[11] Lingxiang Guo, Juping Li, Zhiyang Liu, Quan Li. Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy [J]. Progress in Chemistry, 2022, 34(11): 2489-2502.
[12] Meng Pengfei, Zhang Xiaorong, Liao Shijun, Deng Yijie. Enhancing the Performance of Atomically Dispersed Carbon-Based Catalysts Through Metallic/Nonmetallic Elements Co-Doping Towards Oxygen Reduction [J]. Progress in Chemistry, 2022, 34(10): 2190-2201.
[13] Li Geng, Li Jie, Jiang Hongyu, Liang Xiaozhong, Guo Kunpeng. Mechano-Responsive Luminescent Polymers [J]. Progress in Chemistry, 2022, 34(10): 2222-2238.
[14] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[15] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.