中文
Announcement
More
Progress in Chemistry 2009, Vol. 21 Issue (04): 739-746 Previous Articles   Next Articles

• Review •

Application of Fluorescent Conjugated Polymers in Detecting Biomacromolecules

Zhi Junge1**, Xu Xiuling1, Shen Jinbo2, Zhao Wei2, Tong Bin2, Dong Yuping2**   

  1. (1. Department of Chemistry, Beijing Institute of Technology, Beijing 100081, China; 2. Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China)
  • Received: Revised: Online: Published:
  • Contact: Zhi Junge;Dong Yuping E-mail:zhijunge@bit.edu.cn; chdongyp@bit.edu.cn
PDF ( 2976 ) Cited
Export

EndNote

Ris

BibTeX

 Conjugated polymers exhibit excellent electronic and luminescent properties due to their special π-electronic system and conjugated delocalized structure. The fluorescence intensity and emission wavelength of them vary obviously and selectively with different interaction between conjugated polymer and different detected compounds. The fluorescence signals deriving from the interaction between conjugated polymer and detected compounds are often amplified because the effective electrons and energy transfer along the main-chain of conjugated polymers, which can respond high-sensibly to analytes and exceed to that of small model compound of conjugated polymer. The novel chemical and biological sensors based on conjugated polymers are developed. Many conjugated polymers, including poly(thiophene)s, Poly(fluorene-co-phenylene)s, poly(phenyleneethynylene)s and poly(phenylene vinylene)s are used to detect biomacromolecules. In the present paper, the recent progress of conjugated polymers as biosensors is summarized, and the assay of protein, DNA and toxin using fluorescence conjugated polymers is discussed.

Contents
1 Introduction
2 Application of conjugated polymers in detecting biomacromolecules
2.1 Detecting of protein
2.2 Detecting of DNA
2.3 Detecting of toxin
3 Conclusion

CLC Number: 

[ 1 ]  Samuel I D W, Rumbles G, Collison C J , et al . Synth. Met . ,1997 , 84 : 497 —500
[ 2 ]  Smilowitz L , Hays A , Heeger A J , et al . J . Chem. Phys. , 1993 ,98 : 6504 —6509
[ 3 ]  McQuade D T, Anthony E , Swager TM. Chem. Rev. , 2000 , 100 :2537 —2574
[ 4 ]  Zhou Q , Swager TM. J . Am. Chem. Soc. , 1995 , 117 : 12593 —12602
[ 5 ]  Zhou Q , Swager T M. J . Am. Chem. Soc. , 1995 , 117 : 7017 —7018
[ 6 ]  Gabriela V , Christoph W. Adv. Polym. Sci . , 2005 , 177 : 209 —248
[ 7 ]  Swager TM. Acc. Chem. Res. , 1998 , 31 (5) : 201 —207
[ 8 ]  Nesterov E E , Zhu Z, Swager T M. J . Am. Chem. Soc. , 2005 ,127 (28) : 10083 —10088
[ 9 ]  武照强(Wu Z Q) , 孟令芝(Meng L Z) . 化学进展(Progress in Chemistry) , 2007 , 19 (9) : 1381 —1392
[10 ]  Samuel W T, Guy D J , Swager TM. Chem. Rev. , 2007 , 107 (4) :1339 —1386
[11 ]  Liu Y, Zong L L , Zheng L F , et al . Polymer , 2007 , 48 ( 23) :6799 —6807
[12 ]  Jiang H , Zhao X Y, Schanze K S. Langmuir , 2007 , 23 ( 18) :9481 —9486
[13 ]  KimJ , McQuade D T, Swager TM, et al . Angew. Chem. Int . Ed. ,2000 , 39 (21) : 3868 —3870
[14 ]  Kim I B , Dunkhorst A , Bunz U H F , et al . Macromolecules , 2005 ,38 (11) : 4560 —4562
[15 ]  Kim I B , Bunz U H F. J . Am. Chem. Soc. , 2006 , 128 ( 9) :2818 —2819
[16 ]  Satrijo A , Swager T M. J . Am. Chem. Soc. , 2007 , 129 (51) :16020 —16028
[17 ]  He F , Feng F , Zhu D B. J . Mat . Chem. , 2007 , 17 (35) : 3702 —3707
[18 ]  Xing C F , Yu M H , Zhu D B , et al . Macro. Rap. Commun. ,2007 , 28 (3) : 241 —245
[19 ]  Smith R C , Tennyson A G, LimM H , et al . J . Org. Lett . , 2005 ,7 (16) : 3573 —3575
[20 ]  Kim HJ , Lee J H , Kim T H , et al . J . Poly. Sci . A-Poly. Chem. ,2007 , 45 (8) : 1546 —1556
[21 ]  Saxena A , Fujiki M, Rai R , et al . Macromol . Rap. Commun. ,2004 , 25 (20) : 1771 —1775
[22 ]  Zhou G, Cheng Y, Wang L , et al . Macromolecules , 2005 , 38 (6) :2148 —2153
[23 ]  Kim T H , Swager TM. Angew. Chem. Int . Ed. , 2003 , 42 (39) :4803 —4806
[24 ]  Ho H A , Leclerc M. J . Am. Chem. Soc. , 2003 , 125 ( 15 ) :4412 —4413
[25 ]  Yang J S , Swager TM. J . Am. Chem. Soc. , 1998 , 120 : 11864 —11873
[26 ]  Toal S J , Jones KA , Magde D , et al . J . Am. Chem. Soc. , 2005 ,127 (33) : 11661 —11665
[27 ]  Liu Y, Mills R C , Boncella J M, et al . Langmuir , 2001 , 17 :7452 —7455
[28 ]  Thomas S W, Swager T M. Adv. Mater. , 2006 , 18 (8) : 1047 —1049
[29 ]  Li J , Kenclig C E , Nesterov E E. J . Am. Chem. Soc. , 2007 , 129(5) : 15911 —15918
[30 ]  Zahn S , Swager TM. Angew. Chem. Int . Ed. , 2002 , 41 : 4225 —4230
[31 ]  Ambade A V , Sandanaraj B S , Klaikherd A , et al . Polym. Inter. ,2007 , 56 (4) : 474 —481
[32 ]  Harrison B S , Ramey M B , Reynolds J R , et al . J . Am. Chem.Soc. , 2000 , 122 : 8561 —8562
[33 ]  Fan C H , Plaxco K W, Heeger A. J . Am. Chem. Soc. , 2002 ,124 : 5642 —5643
[34 ]  Chen L , McBranch D W, Whitten D G, et al . Proc. Natl . Acad.Sci . , 1999 , 96 (22) : 12287 —12292
[35 ]  Dwight S J , Gaylord B S , Bazan G C , et al . J . Am. Chem. Soc. ,2004 , 126 (51) : 16850 —16859
[36 ]  Ho H A , Leclerc M. J . Am. Chem. Soc. , 2004 , 126 (5) : 1384 —1387
[37 ]  Disney M D , Zheng J , Swager T M, et al . J . Am. Chem. Soc. ,2004 , 126 : 13343 —13346
[38 ]  Baek M G, Stevens R C , Charych D H. Bioconjugate Chem. , 2000 ,11 (6) : 777 —788.
[39 ]  Zheng J , Swager TM. Chem. Commun. , 2004 , 2798 —2799
[40 ]  Wosnick J H , Mello C M, Swager T M. J . Am. Chem. Soc. ,2005 , 127 (10) : 3400 —3405
[41 ]  Lee K, Cho J C , DeHeck J , et al . Chem. Commun. , 2006 , (18) :1983 —1985
[42 ]  Ramanavicius A , Kurilcik N , Jursenas S , et al . Biosen.Bioelectro. , 2007 , 23 (4) : 499 —505
[43 ]  Moon J H , MacLean P , McDaniel W, et al . Chem. Commun. ,2007 , (46) : 4910 —4912
[44 ]  Shang L , Qin C J , Wang T, et al . J . Phys. Chem. C , 2007 , 111(36) : 13414 —13417
[45 ]  Ho H A , Boissinot M, Leclerc M, et al . Angew. Chem. Int . Ed. ,2002 , 41 (19) : 1548 —1551
[46 ]  BUra-AbeUrem M, Ho H A , Leclerc M. Tetrahedron , 2004 , 60(49) : 11169 —11173
[47 ]  Nilsson K P R , Ingan?s O. Nature Mater. , 2003 , 2 (6) : 419 —428
[48 ]  Wang S , Bazan G C. Adv. Mater. , 2003 , 15 (17) : 1425 —1428
[49 ]  Baker E S , Hong J W, Bazan G C , et al . J . Am. Chem. Soc. ,2006 , 128 (26) : 8484 —8492
[50 ]  Gaylord B S , Heeger AJ , Bazan GC. J . Am. Chem. Soc. , 2003 ,125 (4) : 896 —900
[51 ]  Duan X R , Li Z P , Wang S , et al . J . Am. Chem. Soc. , 2007 ,129 : 4154 —4155
[52 ]  Lee K, Povlich L K, KimJ . Adv. Func. Mater. , 2007 , 17 (14) :2580 —2587
[53 ]  Kushon S A , Ley K D , Whitten D , et al . Langmuir , 2002 , 18(20) : 7245 —7249.
[54 ]  Xu H , Wu H , Fan C , et al . Nucleic Acids Res. , 2005 , 33 : e83
[55 ]  Ma G Y, Cheng Q. Langmuir , 2006 , 22 (16) : 6743 —6745
[56 ]  Chen L H , Xu S , McBranch D. J . Am. Chem. Soc. , 2000 , 122(38) : 9302 —9303
[57 ]  Jones R M, Bergstedt T S , McBranch D W. J . Am. Chem. Soc. ,2001 , 123 (27) : 6726 —6727
[58 ]  Heeger P S , Heeger A J . Proc. Natl . Acad. Sci . , 1999 , 96 (22) :12219 —12221

[1] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[2] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[3] Shijia Li, Ernan Pang, Caihong Hao, Tingting Cai, Shengliang Hu. Preparation of Solid-State Fluorescent Carbon Dots [J]. Progress in Chemistry, 2020, 32(5): 548-561.
[4] Yangyang Zhou, Jian Zhong, Xiaojun Bian, Gang Liu, Liang Li, Juan Yan. Application of Signal Amplification Technology in the Area of Food Safety Detection [J]. Progress in Chemistry, 2018, 30(2/3): 206-224.
[5] Deng Wangping, Wang Lihua, Song Shiping, Zuo Xiaolei. Biosensors in POCT Application [J]. Progress in Chemistry, 2016, 28(9): 1341-1350.
[6] Cao Ya, Zhu Xiaoli, Zhao Jing, Li Hao, Li Genxi. Electrochemical Analysis of Tumor Marker Proteins [J]. Progress in Chemistry, 2015, 27(1): 1-10.
[7] Song Yingpan, Feng Miao, Zhan Hongbing*. Application of Graphene Edge Effect in Electrochemical Biosensors [J]. Progress in Chemistry, 2013, 25(05): 698-706.
[8] Li Jing, Yang Xiaoying*. Applications of Novel Carbon Nanomaterials——Graphene and Its Derivatives in Biosensing [J]. Progress in Chemistry, 2013, 25(0203): 380-396.
[9] Wen Yanli, Lin Meihua, Pei Hao, Lu Na, Fan Chunhai. Electrochemical-Based MicroRNA Sensors [J]. Progress in Chemistry, 2012, (9): 1656-1664.
[10] Song Yingpan, Feng Miao, Zhan Hongbing. Applications of Graphene Nanocomposites in Electrochemical Biosensors [J]. Progress in Chemistry, 2012, (9): 1665-1673.
[11] Dong Haifeng, Zhang Xueji. DNA Biosensors Based on Functional Nanoprobes [J]. Progress in Chemistry, 2012, 24(11): 2247-2254.
[12] Shi Wentao, Di Jing, Ma Zhanfang. Electrochemical Glucose Biosensors [J]. Progress in Chemistry, 2012, 24(04): 568-576.
[13] Wei Yan, Liu Zhonggang, Gao Chao, Wang Lun, Liu Jinhuai, Huang Xingjiu. Electrochemical Sensors and Biosensors Based on Nanomaterials: A New Approach for Detection of Organic Micropollutants [J]. Progress in Chemistry, 2012, 24(04): 616-627.
[14] . Application of Quantum Dots Based Electrochemical Biosensors [J]. Progress in Chemistry, 2010, 22(11): 2179-2190.
[15] . Interactions between Carbon Nanotubes and Biomolecules [J]. Progress in Chemistry, 2010, 22(09): 1767-1775.