中文
Announcement
More
Progress in Chemistry 2009, Vol. 21 Issue (04): 644-653 Previous Articles   Next Articles

• Review •

Antitumor Au(III) Complexes

Shi Pengfei1,2**; Jiang Qin1   

  1. (1. School of Chemical Engineering, Huaihai Institute of Technologe, Lianyungan, 222005, China; 2. State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, China)
  • Received: Revised: Online: Published:
  • Contact: Shi Pengfei E-mail:shipf009@163.com
PDF ( 1663 ) Cited
Export

EndNote

Ris

BibTeX

Au(III) complexes have been extensively studied for their potential antitumor activity in the research of metallodrugs. In this paper, the stable Au(III) complexes are classified according to the coordination atoms and their characteristic structure. The recent development of the researches on the antitumor activity of Au(III) complexes including the structure-activity relationship, biological targets and the mechanisms of action are reviewed. The structure of the coordination ligand and the leaving group have great impact on the in vitro cytotoxicity of the Au(III) complex. Many physical and biological methods are introduced to study the interaction between the Au(III) complexes and the suspected bio-target, such as DNA, protein, mitochondrion, thio-containing biomolecules, etc. The interaction modes (intercalating, electrostatic interaction, covalent bonding, etc.) are focused to illustrate the reason for the antitumor activity of Au(III) complexes. Some new approaches are proposed for the designing and producing of a target-specific drug with a suitable pharmacological activity.

Contents
1 Introduction
2 Structures of Au(III) complexes
2.1 N-coordinated Au(III) complexes
2.2 C-coordinated Au(III) complexes
2.3 {N,C}-coordinated Au(III) complexes
2.4 O/S/P/Se/Te-coordinated Au(III) complexes
2.5 Five/Six-coordinated Au(III) complexes
3 Antitumor activity of Au(III) complexes
3.1 Structure-activity relationship
3.2 Mechanism for the antitumor Au(III) complexes
4 Perspective of Au(III) complex
5 Conclusion

CLC Number: 

[ 1 ]  Rosenberg B. Metals Compounds in Cancer Chemotherapy ( Eds.Pérez J M, Fuertes M A , Alonso C) . Research Signpost , 2005.31 —45
[ 2 ]  Wei H Y, Wang X Y, Guo Z J . Metals Compounds in Cancer Chemotherapy (Eds. Pérez J M, Fuertes MA , Alonso C) . Research Signpost , 2005. 241 —267
[ 3 ]  Messori L , Marcon G. Met . Ions Bio. Sys. , 2004 , 42 :385 —424
[ 4 ]  Messori L , Gabbiani C. Metals Compounds in Cancer Chemotherapy(Eds. Pérez J M, Fuertes M A , Alonso C) . Research Signpost ,2005. 355 —375
[ 5 ]  Shaw C F. Chem. Rev. , 1999 , 99 : 2589 —2600
[ 6 ]  Messori L , Abbate F , Orioli P , et al . Chem. Commun. , 2002 ,612 —613
[ 7 ]  Che C M, Sun R W Y, Yu W Y, et al . Chem. Commun. , 2003 ,1718 —1719
[ 8 ]  Cinellu MA , Minghetti G, Pinna MV , et al . Dalton Trans. , 2000 ,1261 —1265
[ 9 ]  Micklitz W, Lippert B , Muller G, et al . Inorg. Chim. Acta , 1989 ,165 : 57 —64
[10 ]  Hollis L S , Lippard S J . J . Am. Chem. Soc. , 1983 , 105 : 4293 —4299
[11 ]  Pitteri B , Marangoni G, Visentin F , et al . Dalton Trans. , 1999 ,677 —682
[12 ]  Messori L , Abbate F , Marcon G, et al . J . Med. Chem. , 2000 ,43 : 3541 —3548
[13 ]  Liu H Q , Cheung T C , Peng S M, et al . Chem. Commun. , 1995 ,1787 —1788
[14 ]  Abbate F , Orioli P , Bruni B , et al . Inorg. Chim. Acta , 2000 ,311 : 1 —5
[15 ]  Fan D M, Yang C T, Ranford J D , et al . Dalton Trans. , 2003 ,4749 —4753
[16 ]  Yang G, Raptis R G. Dalton Trans. , 2002 , 3936 —3938
[17 ]  Byers P K, Canty AJ , Skelton B W, et al . Aust . J . Chem. , 1985 ,38 : 1251 —1255
[18 ]  Byers P K, Canty A J , Minchin N J , et al . Dalton Trans. , 1985 ,1183 —1189
[19 ]  Canty A J , Minchin N J , Peter C H , et al . Dalton Trans. , 1982 ,1795 —1802
[20 ]  Zou J , Guo Z J , Parkinson J A , et al . Chem. Commun. , 1999 ,1359 —1360
[21 ]  Wienken M, Lippert B , Zangrando E , et al . Inorg. Chem. , 1992 ,31 : 1983 —1985
[22 ]  Best S L , Chattopadhyay T K, Djuran M I , et al . Dalton Trans. ,1997 , 2587 —2596
[23 ]  Yang T, Tu C , Zhang J Y, et al . Dalton Trans. , 2003 , 3419 —3424
[24 ]  Murray H H , Fackler J J P , Porter L C , et al . Inorg. Chem. ,1987 , 26 : 357 —363
[25 ]  Contel M, Edwards A J , Garrido J , et al . J . Organomet . Chem. ,2000 , 607 : 129 —136
[26 ]  Cinellu M A , Minghetti G, Stoccoro S , et al . Chem. Commun. ,2004 , 1618 —1619
[27 ]  Fehlhammer W P , Dahl L F. J . Am. Chem. Soc. , 1972 , 94 : 3370—3377
[28 ]  Fuchita Y, Ieda H , Yasutake M. Dalton Trans. , 2000 , 271 —274
[29 ]  Fuchita Y, Ieda H , Wada S , et al . Dalton Trans. , 1999 , 4431 —4435
[30 ]  Fuchita Y, Ieda H , Tsunemune Y, et al . Dalton Trans. , 1998 ,791 —796
[31 ]  Fuchita Y, Ieda H , Kayama A , et al . Dalton Trans. , 1998 , 4095 —4100
[32 ]  Cinellu M A , Minghetti G, Pinna M V , et al . Eur. J . Inorg.Chem. , 2003 , 2304 —2310
[33 ]  Wong K M C , Zhu X L , Hung L L , Zhu N Y, et al . Chem.Commun. , 2005 , 2906 —2908
[34 ]  Yam V W W, Wong KM C , Hung L L , Zhu N Y. Angew. Chem.Int . Ed. , 2005 , 44 : 3107 —3110
[35 ]  Dinger M B , Henderson W. J . Organomet . Chem. , 1999 , 577 :219 —222
[36 ]  Contel M, Nobel D , Spek A L. Organometallics , 2000 , 19 : 3288 —3295
[37 ]  Vicente J , Bermudez M D , Carrillo M P , et al . J . Organomet .Chem. , 1993 , 456 : 305 —312
[38 ]  Vicente J , Chicote M T, Bermudez M D , et al . Dalton Trans. ,1984 , 557 —562
[39 ]  Barnholtz S L , Lydon J D , Huang G, et al . Inorg. Chem. , 2001 ,40 : 972 —976
[40 ]  Vicente J , Bermudez M D , Carrion F J , et al . J . Organomet .Chem. , 1996 , 508 : 53 —57
[41 ]  Heinzel U , Mattes R. Polyhedron , 1991 , 10 : 19 —25
[42 ]  Blake A J , Gould R O , Greig J A , et al . Chem. Commun. , 1989 ,876 —878
[43 ]  Jentsch D , Jones P G, Thêne C , et al . Chem. Commun. , 1989 ,1495 —1496
[44 ]  Fernandez E J , Gil M, Olmos M E , et al . Inorg. Chem. , 2001 ,40 : 3018 —3024
[45 ]  Canales S , Crespo O , Gimeno M C , et al . Organometallics , 2001 ,20 : 4812 —4818
[46 ]  Wang C , Haushalter R C , Whangbo M H. Inorg. Chem. , 1998 ,37 : 6096 —6099
[47 ]  Sommerer S O , MacBeth C E , Jircitano A J , et al . Acta Cryst .Sect . C , 1997 , 53 : 1551 —1553
[48 ]  Cattalini L , Orio A , Tobe ML. J . Am. Chem. Soc. , 1967 , 89 :3130 —3134
[49 ]  Robinson W T, Sinn E. Dalton Trans. , 1975 , 726 —731
[50 ]  Marangoni G, Pitteri B , Bertolasi V , et al . Dalton Trans. , 1986 ,1941 —1944
[51 ]  Timkovich R , Tulinsky A. Inorg. Chem. , 1977 , 16 : 962 —963
[52 ]  Suh M P , Kim S , Shim B Y, et al . Inorg. Chem. , 1996 , 35 :3595 —3598
[53 ]  Messori L , Orioli P , Gabbiani C. Farmatsiya , 2005 , 52 : 64 —67
[54 ]  Lum C T, Yang Z F , Li H Y, Sun R W Y, Fan S T, Poon R T P ,Lin M C M, Che C M, Kung H F. Int . J . Cancer , 2006 , 118 :1527 —1538
[55 ]  Kostova I. Anti-Cancer Agents Med. Chem. , 2006 , 6 : 19 —32
[56 ]  Tiekink E R T. Gold Bull . , 2003 , 36 : 117 —124
[57 ]  Messori L , Marcon G, Orioli P. Bioinorg. Chem. Appl . , 2003 , 1 :177 —187
[58 ]  Buckley R G, Elsome A M, Fricker S P , et al . J . Med. Chem. ,1996 , 39 : 5208 —5214
[59 ]  Marcon G, Carotti S , Coronnello M, et al . J . Med. Chem. , 2002 ,45 : 1672 —1677
[60 ]  Shi P F , Jiang Q , Lin J , et al . J . Inorg. Biochem. , 2006 , 100 :939 —945
[61 ]  Shi P F , Jiang Q , Zhao YM, et al . J . Biol . Inorg. Chem. , 2006 ,11 : 745 —752
[62 ]  Parish R V , Mack J , Hargreaves L , et al . Dalton Trans. , 1996 ,69 —74
[63 ]  Mort J S , Buttle D J . Int . J . Biochem. Cell Biol . , 1997 , 29 :715 —720
[64 ]  Keppler D , Sameni M, Moin K. Biochem. Cell Biol . , 1996 , 74 :799 —810
[65 ]  Kos J , Nielsen HJ , Krasovec M, et al . Clin. Cancer Res. , 1998 ,4 : 1511 —1516
[66 ]  Duffy MJ . Clin. Cancer Res. , 1996 , 2 : 613 —618
[67 ]  Moin K, Cao L , Day N A , et al . Biol . Chem. , 1998 , 379 : 1093 —1099
[68 ]  Thornberry N A , Lazebnik Y. Science , 1998 , 281 : 1312 —1316
[69 ]  Fricker S P , Skerjl R , Cameron B R , et al . Gold. 2003 : New Industrial Applications for Gold , Vancouver
[70 ]  Becker K, Herold-Mende C , Park J J , et al . J . Med. Chem. ,2001 , 44 : 2784 —2792
[71 ]  Mckeage MJ , Maharaj L , Berners-Price S J . Coord. Chem. Rev. ,2002 , 232 : 127 —135
[72 ]  Barbard P J , Berner-Price S J . Coord. Chem. Rev. , 2007 , 251 :1889 —1902
[73 ]  Rigobello M P , Messori L , Marcon G, Cinellu M A , Bragadin M,Folda A , Scutari G, Bindoli A. J . Inorg. Biochem. , 98 : 1634 —1641
[74 ]  Li C KL , Sun R W Y, Kui S C F , Zhu N Y, Che C M. Chem.Eur. J . , 2006 , 12 : 5253 —5266
[75 ]  Wang Y, He Q Y, Che CM, et al . Proteomics , 2006 , 6 : 131 —142
[76 ]  Marcon G, Messori L , Orioli P , et al . Eur. J . Biochem. , 2003 ,270 : 4655 —4611
[77 ]  Ronconi L , Marzano C , Zanello P , et al . J . Med. Chem. , 2006 ,49 :1648 —1657
[78 ]  Gabbiani C , Casini A , Messori L , et al . Inorg. Chem. , 2008 , 47 :2368 —2379
[79 ]  Wang X Y, Guo ZJ . Dalton Trans. , 2008 , 1521 —1532

[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[3] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[4] Shunxin Gu, Qin Jiang, Pengfei Shi. Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2022, 34(9): 1957-1971.
[5] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[6] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[7] Wen Zhou, Xin Zhang, Hongpeng Ma, Jie Xu, Bin Guo, Panxin Li. Chemical and Physical Mechanism and Method of Preparation of Thermoplastic Starch [J]. Progress in Chemistry, 2021, 33(11): 1972-1982.
[8] Yujue Wang, Min Hu, Xiao Li, Nan Xu. Chemical Composition, Sources and Formation Mechanisms of Particulate Brown Carbon in the Atmosphere [J]. Progress in Chemistry, 2020, 32(5): 627-641.
[9] Yue Liu, Yihan Wu, Hongwei Pang, Xiangxue Wang, Shujun Yu, Xiangke Wang. Study on the Removal of Water Pollutants by Graphite Phase Carbon Nitride Materials [J]. Progress in Chemistry, 2019, 31(6): 831-846.
[10] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[11] Xiaoxiao Tan, Guoshuai Li, Qingpeng Wang, Bingquan Wang, Dacheng Li, Peng George Wang. Small Molecular Platinum(Ⅳ) Compounds as Antitumor Agents [J]. Progress in Chemistry, 2018, 30(6): 831-846.
[12] Yuewen Sun, Suxing Jin, Xiaoyong Wang, Zijian Guo. Application Prospect of Metal Complexes in Chemoimmunotherapy of Tumors [J]. Progress in Chemistry, 2018, 30(10): 1573-1583.
[13] Lin Han, Baoliang Chen*. Generation Mechanism and Fate Behaviors of Environmental Persistent Free Radicals [J]. Progress in Chemistry, 2017, 29(9): 1008-1020.
[14] Dewen Han, Xintong Wang, Fashuai Ju, Yangjun Wang, Jialiang Feng, Wu Wang. Organosulfates in PM2.5 [J]. Progress in Chemistry, 2017, 29(5): 530-538.
[15] Zhao Yanxia, He Shenggui. Reactivity of Heteronuclear Oxide Clusters with Small Molecules [J]. Progress in Chemistry, 2016, 28(4): 401-414.
Viewed
Full text


Abstract

Antitumor Au(III) Complexes