中文
Announcement
More
Progress in Chemistry 2009, Vol. 21 Issue (04): 588-599 Previous Articles   Next Articles

• Review •

Metalloporphyrin-Based Supramolecular Catalysts

Yang Zaiwen1,3 ;Yang Jin2;  Huang Xiaojuan1;  Tang Ning2;  Wu Biao1**   

  1. (1.State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute
    of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
    2.College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China;
    3.Graduate University of Chinese Academy of Sciences, Beijing, 100049, China)
  • Received: Revised: Online: Published:
  • Contact: Wu Biao E-mail:wubiao@lzb.ac.cn
PDF ( 2575 ) Cited
Export

EndNote

Ris

BibTeX

Metalloporphyrin-based supramolecular catalyst is one of the most important research subjects in supramolecular catalysis. Supramolecular micro-reactors containing the metalloporphyrin backbone provide a specific micro-environment for the active sites in catalytic processes, which can greatly improve the selectivities and catalytic efficiencies of the catalysts. This review presents the recent progress in the design, structures and catalytic properties of metalloporphyrins as supramolecular catalysts from the aspects of the construction of supramolecular catalyst precursors (based on cyclodextrin, template, etc.) and their catalytic applications (in mimicking cytochrome P450 enzymes, electrocatalysis, photocatalysis, etc), as well as a perspective of the future development in this field.

Contents
1 Introduction
2 Metalloporphyrin-based supramolecular catalysts
2.1 Metalloporphyrin-based supramolecular catalysts based on cyclodextrin
2.2 Metalloporphyrin-based supramolecular catalysts in mimicking cytochrome P-450 enzymes
2.3 Metalloporphyrin-based supramolecular catalysts in electrocatalysis
2.4 Metalloporphyrin-based supramolecular catalysts based on template
2.5 Metalloporphyrin-based supramolecular catalysts in photocatalysis
2.6 Others
3 Conclusions

CLC Number: 

[ 1 ]  Sanders J KM. Chem. Eur. J . , 1998 , 4 : 1378 —1383
[ 2 ]  Cram D J . Science , 1988 , 240 : 760 —767
[ 3 ]  Lehn J M. Angew. Chem. Int . Ed. Engl . , 1988 , 27 : 89 —112
[ 4 ]  Biesaga M, Pyrzyńska K, Trojanowicz M. Talanta ,2000 , 51 : 209 —224
[ 5 ]  Milgrom L R. J . Chem. Soc. Perkin Trans. 1 , 1983 , 10 : 2535 —2539
[ 6 ]  RibóJ M, Farrera J A , Valero ML , et al . Tetrahedron , 1995 , 51 :3705 —3712
[ 7 ]  French R R , Wirz J , Woggon WD. HeIv. Chim. Acta , 1998 , 81 :1521 —1527
[ 8 ]  French R R , Holzer P , Leuenberger M G, et al . Angew. Chem.Int . Ed. , 2000 , 39 : 1267 —1269
[ 9 ]  French R R , Holzer P , Leuenberger M, et al . J . Inorg. Biochem. ,2002 , 88 : 295 —304
[10 ]  Breslow R , Zhang X, Huang Y. J . Am. Chem. Soc. , 1997 , 119 :4535 —4536
[11 ]  Breslow R , Gabriele B , Yang J . Tetrahedron Lett . , 1998 , 39 :2887 —2890
[12 ]  Yang J , Gabriele B , Breslow R , et al . J . Org. Chem. , 2002 , 67 :5057 —5067
[13 ]  Kuroda Y, Hiroshige T, Ogoshi H. J . Chem. Soc. Chem.Commun. , 1990 , 1594 —1595
[14 ]  Kuroda Y, Ito M, Sera T, et al . J . Am. Chem. Soc. , 1993 , 115 :7003 —7004
[15 ]  Schenning A P HJ , Spelberg J HL , Hubert D H W, et al . Chem.Eur. J . , 1998 , 4 : 871 —880
[16 ]  Benson D R , Valentekovich R , Tam S W, et al . HeIv. Chim.Acta , 1993 , 76 : 2034 —2060
[17 ]  Elemans J A A W, Bijsterveld E J A , Rowan A E , et al . Eur. J .Org. Chem. , 2007 , 751 —757
[18 ]  Thordarson P , Bijsterveld EJ A , Rowan A E , et al . Nature , 2003 ,424 : 915 —918
[19 ]  Carlier P R. Angew. Chem. Int . Ed. , 2004 , 43 : 2602 —2605
[20 ]  Merlau ML , Grande WJ , Nguyen S T, et al . J . Mol . Catal . A:Chem. , 2000 , 156 : 79 —84
[21 ]  Dovidauskas S , Toma H E , Araki K, et al . Inorg. Chim. Acta ,2000 , 305 : 206 —213
[22 ]  Kobayashia N , Matsuea T, Fujihiraa M, et al . J . Electroanal .Chem. , 1979 , 103 : 427 —431
[23 ]  Bettelheim A , Chan R J H , Kuwana T. J . Electroanal . Chem. ,1980 , 110 : 93 —102
[24 ]  D’Souza F , Deviprasad R G, Hsieh Y Y. J . Electroanal . Chem. ,1996 , 411 : 167 —171
[25 ]  Collman J P , Denisevich P , Konai Y, et al . J . Am. Chem. Soc. ,1980 , 102 : 6027 —6036
[26 ]  Liu Y, Yan YL , Lei J , et al . Electrochem. Commun. , 2007 , 9 :2564 —2570
[27 ]  Araki K, Dovidauskas S , Winnischofer H , et al . J . Electroanal .Chem. , 2001 , 498 : 152 —160
[28 ]  Winnischofer H , Otake V Y, Dovidauskas S , et al . Electrochim.Acta , 2004 , 49 : 3711 —3718
[29 ]  Nunes G S , Mayer I , Toma H E , et al . J . Catal . , 2005 , 236 :55 —61
[30 ]  Mayer I , Nunes G S , Toma H E , et al . Eur. J . Inorg. Chem. ,2006 , 850 —856
[31 ]  Araki K, Winnischofer H , Viana H E B , et al . J . Electroanal .Chem. , 2004 , 562 : 145 —152
[32 ]  Liu S Q , Xu J Q , Sun H R , et al . Inorg. Chim. Acta , 2000 , 306 :87 —93
[33 ]  Lei J , Ju H , Ikeda O. Electrochim. Acta , 2004 , 49 : 2453 —2460
[34 ]  Kleij A W, Reek J N H. Chem. Eur. J . , 2006 , 12 : 4218 —4227
[35 ]  Slagt V F , Kamer P CJ , Leeuwen P WN M, et al . J . Am. Chem.Soc. , 2004 , 126 : 1526 —1536
[36 ]  Slagt V F , Reek J N H , Kamer P C J , et al . Angew. Chem. Int .Ed. , 2001 , 40 : 4271 —4274
[37 ]  Slagt V F , Leeuwen P W N M, Reek J N H. Angew. Chem. Int .Ed. , 2003 , 42 : 5619 —5623
[38 ]  Lazzaroni R , Uccello-Barretta G, Scamuzzi S , et al .Organometallics , 1996 , 15 : 4657 —4659
[39 ]  Botteghi C , Cazzolato L , Marchetti M, et al . J . Org. Chem. ,1995 , 60 : 6612 —6615
[40 ]  Slot S C , Duran J , Luten J , et al . Organometallics , 2002 , 21 :3873 —3883
[41 ]  Kleij A W, Kuil M, Tooke D M, et al . Inorg. Chem. , 2005 , 44 :7696 —7698
[42 ]  Slagt V F , Kaiser P , Berkessel A , et al . Eur. J . Inorg. Chem. ,2007 , 4653 —4662
[43 ]  Merlau ML , Mejia M P , Nguyen S T, et al . Angew. Chem. Int .Ed. , 2001 , 40 : 4239 —4242
[44 ]  Slagt V F , Leeuwen P WN M, Reek J N H. Dalton Trans. , 2007 ,2302 —2310
[45 ]  Tachibana J , Chiba M, Ichikawa M. Supramol . Sci . , 1998 , 5 :281 —287
[46 ]  Pistorio B J , Chang CJ , Nocera D G. J . Am. Chem. Soc. , 2002 ,124 : 7884 —7885
[47 ]  Rosenthal J , Pistorio B J , Chng L L , et al . J . Org. Chem. , 2005 ,70 : 1885 —1888
[48 ]  Collman J P , Zhang X, Hembre R T, et al . J . Am. Chem. Soc. ,1990 , 112 : 5356 —5357
[49 ]  Collman J P , Lee V J , Kellen-Yuen C J , et al . J . Am. Chem.Soc. , 1995 , 117 : 692 —703
[50 ]  Anderson S , Anderson H L , Sanders J K M. Acc. Chem. Res. ,1993 , 26 : 469 —475
[51 ]  Waiter C J , Anderson HL , Sanders J KM. J . Chem. Soc. Chem.Commun. , 1993 , 458 —460
[52 ]  Anderson H L , Bashall A , Henrick K, et al . Angew. Chem. Int .Ed. Engl . , 1994 , 33 : 429 —431
[53 ]  Clyde-Watson Z, Vidal Ferran A , Twyman L J , et al . New J .Chem. , 1998 , 493 —502
[54 ]  MackayL G, Wylie R S , Sanders J K M. J . Am. Chem. Soc. ,1994 , 116 : 3141 —3142
[55 ]  Jónsson S , Odille F G J , Norrby P O , et al . Chem. Commun. ,2005 , 549 —551
[56 ]  Jónsson S , Odille F GJ , Norrby P O , et al . Org. Biomol . Chem. ,2006 , 4 : 1927 —1948

[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Liqing Li, Minghao Zheng, Dandan Jiang, Shuxin Cao, Kunming Liu, Jinbiao Liu. Colorimetric and Fluorescent Probes Based on the Oxidation of o-Phenylenediamine for the Detection of Bio-Molecules [J]. Progress in Chemistry, 2022, 34(8): 1815-1830.
[7] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[8] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[9] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[10] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[11] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[12] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[13] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[14] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[15] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.