中文
Announcement
More
Progress in Chemistry 2009, Vol. 21 Issue (01): 134-142 Previous Articles   Next Articles

• Review •

Bio-Detection, Cellular Imaging and Cancer Photothermal Therapy Based on Gold Nanorods

Ma Zhanfang**;Tian Le;Di Jing;Ding Teng   

  1. (Department of Chemistry, Capital Normal University, Beijing 100037, China)
  • Received: Revised: Online: Published:
  • Contact: Ma Zhanfang E-mail:mazhanfang@yahoo.com
PDF ( 7011 ) Cited
Export

EndNote

Ris

BibTeX

Due to unique and tunable surface plsmon resonance properties, gold nanorods have widely potential and important applications, i.e., fabrications of nanoconposites, nanodevices, nanobiotechnology, and biomedicine. Gold nanorods, therefore, have been attracted much attention. The latest advances on the applications of gold nanorods involving biological detection, cellular imaging, and cancer photothermal therapy are reviewed in this paper. Meanwhile the optical properties and several main approaches of surface modification of gold nanorods are also introduced. In addition the main issues existing in the biological applications are discussed.

Contents
1 Optical properties of gold nanorods
2 Surface modifications of gold nanorods
2.1 Silica-coated gold nanorods
2.2 Modification of gold nanorods using biomolecules
3. Applications of gold nanorods in biodetection, bioimaging, and cancer photothermal therapy
3.1 Applications of gold nanorods in bio-molecular detection
3.2 Applications of gold nanorods in cell imaging and cancer photothermal therapy
4 Conclusion and outlook

CLC Number: 

[ 1 ]  Dubertret B , Calame M, Libchaber A J . Nature Biotech. , 2001 ,19 : 365 —370
[ 2 ]  Imahori H , Fukuzumi S. Adv. Mater. , 2001 , 13 : 1197 —1199
[ 3 ]  Wiss S. Science , 1999 , 283 : 1676 —1683
[ 4 ]  Nie S , Eniory S R. Science , 1997 , 275 : 1102 —1106
[ 5 ]  Zhang J L , Du J M. Angew. Chem. Int . Ed. , 2006 , 45 : 1116 —1119
[ 6 ]  Zhu J , Shen Y, Xie A , et al . J . Phys. Chem. C , 2007 , 111 :7629 —7633
[ 7 ]  Chen J , Saeki F , Wiley B , et al . Nano Lett . , 2005 , 5 : 473 —477
[ 8 ]  Grabar K C , Allison KJ . Langmuir , 1996 , 12 : 2353 —2561
[ 9 ]  Sun Y, Xia Y. Science , 2002 , 298 : 2176 —2179
[10 ]  Sun Y, Xia Y. J . Am. Chem. Soc. , 2004 , 126 : 3892 —3901
[11 ]  Jana N R , Gearheart L , Murphy CJ . Langmuir , 2001 , 17 : 6782 —6786
[12 ]  Li C C , Shuford KL , Park Q H , et al . Angew. Chem. Int . Ed. ,2007 , 46 : 3264 —3267
[13 ]  Sau T K, Murphy C J . J . Am. Chem. Soc. , 2004 , 126 : 8648 —8649
[14 ]  Kwon K, Lee K Y, Kim M J , et al . Chem. Phys. Lett . , 2006 ,432 : 209 —212
[15 ]  Foss C A , Hornyak G L , Stockert J A , et al . J . Phys. Chem. ,1992 , 96 : 7497 —7499
[16 ]  Nikoobakht B , El-Sayed M A. Chem. Mater. , 2003 , 15 : 1957 —1962
[17 ]  Sau T K, Murphy C J . Langmuir , 2004 , 20 : 6414 —6420
[18 ]  Kreibig U , Vollmer M. Optical Properties of Metal Clusters. Berlin :Springer-Verlag , 1995
[19 ]  Huang X, El-Sayed I H , Qian W, et al . J . Am. Chem. Soc. ,2006 , 128 : 2115 —2120
[20 ]  Murphy C J , Sau T K, Gole A M, et al . J . Phys. Chem. B , 2005 ,109 : 13857 —13870
[21 ]  Pérez2Juste J , Pastoriza-Santos I , Liz-Marzán L M, et al . Coor.Chem. Rev. , 2005 , 249 : 1870 —1901
[22 ]  Connor E E , Mwamuka J , Gole A , et al . Small , 2005 , 1 : 325 —327
[23 ]  Cortesi R , Esposito E , Menegatti E , et al . Int . J . Pharm. , 1996 ,139 : 69 —78
[24 ]  Mirska D , Schirmer K, Fnari S S , et al . Colloids Surf . B , 2005 ,40 : 51 —59
[25 ]  Pastoriza-Santos I , Pérez-Juste J , Liz-Marzán L M. Chem. Mater. ,2006 , 18 : 2465 —2467
[26 ]  Wang C G, Ma Z F , Su Z M. Nanotechnology , 2006 , 17 : 1819 —1824
[27 ]  Takahashi H , Niidome Y, Niidome T, et al . Langmuir , 2006 , 22 :2 —5
[28 ]  Liao H , Hafner J H. Chem. Mater. , 2005 , 17 : 4636 —4641
[29 ]  Yu C , Irudayaraj J . Anal . Chem. , 2007 , 79 : 572 —579
[30 ]  Marinakos S M, Chen S , Chilkoti A. Anal . Chem. , 2007 , 79 :5278 —5283
[31 ]  Sudeep P K, Joseph S T S , Thomas K G. J . Am. Chem. Soc. ,2005 , 127 : 6516 —6517
[32 ]  Li C Z, Male K B , Hrapovic S , et al . Chem. Commun. , 2005 ,3924 —3926
[33 ]  Wang C G, Ma Z F , Wang T T, et al . Adv. Funct . Mater. , 2006 ,16 : 1673 —1678
[34 ]  Wang C G, Chen Y, Wang T T, et al . Chem. Mater. , 2007 , 19 :5809 —5811
[35 ]  Wang C G, Chen Y, Wang T T, et al . Adv. Funct . Mater. , 2008 ,18 : 355 —361
[36 ]  Wang H , Huff T B , Zweifel D A , et al . Proc. Natl . Acad. Sci .USA , 2005 , 102 : 15752 —15756
[37 ]  Durr NJ , Larson T, Smith D K, et al . Nano Lett . , 2007 , 7 : 941 —945
[38 ]  Jain P K, El-Sayed I H , El-Sayed MA. Nanotoday , 2007 , 1 : 18 —29
[39 ]  Huang X, El-Sayed I H , Qian W, et al . J . Am. Chem. Soc. ,2006 , 128 : 2115 —2120

[1] Fei Ren, Jianbing Shi, Bin Tong, Zhengxu Cai, Yuping Dong. Near Infrared Fluorescent Dyes with Aggregation-Induced Emission [J]. Progress in Chemistry, 2021, 33(3): 341-354.
[2] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[3] Wanqiu Huang, Miaomiao Gao, Hongjing Dou. Polypyrrole and Its Nanocomposites Applied in Photothermal Therapy [J]. Progress in Chemistry, 2020, 32(4): 371-380.
[4] Hong Li, Yuanyuan Zhao, Haonan Peng. Dopamine Based Nanomaterials for Biomedical Applications [J]. Progress in Chemistry, 2018, 30(8): 1228-1241.
[5] Rui Chen*, Jingjing Wang, Hongzhi Qiao. Organic Photothermal Conversion Materials and Their Application in Photothermal Therapy [J]. Progress in Chemistry, 2017, 29(2/3): 329-336.
[6] Lu Wensheng, Wang Haifei, Zhang Jianping, Jiang Long. Gold Nanorods: Synthesis, Growth Mechanism and Purification [J]. Progress in Chemistry, 2015, 27(7): 785-793.
[7] Ge Yujun, Chi Cheng, Wu Rong, Guo Xia, Zhang Qiao, Yang Jian. Gold Nanorods-Based Core-Shell Nanostructures: Synthesis, Characterization and Optical Properties [J]. Progress in Chemistry, 2012, 24(05): 776-783.
[8] Liu Tao, Sun Lining, Liu Zheng, Qiu Yannan, Shi Liyi. Rare-Earth Upconversion Nanophosphors [J]. Progress in Chemistry, 2012, 24(0203): 304-317.