中文
Announcement
More
Progress in Chemistry 2009, Vol. 21 Issue (01): 116-120 Previous Articles   Next Articles

• Review •

Application of Organic Electrolytes in TiO2 Nanotubes Fabrication

Yang Xuyi;Huang Qiyu**   

  1. (School of Microelectronics of Shanghai Jiao Tong University, Shanghai 200240, China)
  • Received: Revised: Online: Published:
  • Contact: Huang Qiyu E-mail:qiyu@sjtu.edu.cn
PDF ( 1972 ) Cited
Export

EndNote

Ris

BibTeX

Titania nanotubes have special structures and excellent performances, which draw a great many researchers’ attention. Anodic oxidization is one of the most important methods to fabricate titania nanotubes. Recently, some researches have made remarkable achievements by using organic electrolytes in anodic oxidization. Compared with conventional aqueous HF-based electrolytes, the titania nanotubes prepared from nonaqueous organic electrolytes exhibit higher aspect ratio and higher photoconversion efficiency. This paper reviews the principle of titania nanotubes fabrication and the influence of the organic electrolytes on the growth of titania nanotubes in anodic oxidization.

Contents
1 The mechanism of anodic oxidization
2 Organic electrolyte
2.1 The influence of organic electrolyte on TiO2 nanotubes
2.2 The photoelectric characteristics of TiO2 nanotubes fabricated in organic electrolyte
3 Suggestions and prospects

CLC Number: 

[ 1 ]  O’regan B , Gratzel M. Nature , 1991 , 353 : 737 —740
[ 2 ]  Mor G K, Shankar K, Paulose M, et al . Nano Lett . , 2005 , 5 :191 —195
[ 3 ]  Quan X, Yang S G, Ruan X L , et al . Environ. Sci . Technol . ,2005 , 39 : 3770 —3775
[ 4 ]  Oh S H , Finones R R , Daraio C , et al . Biomaterials , 2005 , 26 :4938 —4943
[ 5 ]  Varghese O K, Gong D W, Paulose M, Ong K G, et al . Adv.Mater. , 2003 , 15 : 624 —627
[ 6 ]  Hoyer P. Langmuir , 1996 , 12 : 1411 —1413
[ 7 ]  Zhang Q H , Gao L , Sun J , et al . Chem. Lett . , 2002 , 31 :226 —227
[ 8 ]  Zwilling V , Darque-Ceretti E , Boutry-Forveille A , et al . Surf .Interface Anal . , 1999 , 27 : 629 —637
[ 9 ]  Macak J M, Tsuchiya H , Schmuki P. Angew. Chem. Int . Ed. ,2005 , 44 : 2100 —2102
[10 ]  Beranek R , Hildebrand H , Schmuki P. Electrochem. Solid-State Lett . , 2003 , 6 : B12 —B14
[11 ]  Cai Q Y, Paulose M, Varghese O K, et al . J . Mater. Res. , 2005 ,20 : 230 —236
[12 ]  Varghese O K, Gong D W, Paulose M, et al . J . Mater. Res. ,2003 , 18 : 156 —165
[13 ]  Ruan C M, Paulose M, Varghese O K, et al . J . Phys. Chem. B ,2005 , 109 : 15754 —15759
[14 ]  Macak J M, Tsuchiya H , Taveira L , et al . Angew. Chem. Int .Ed. , 2005 , 44 : 7463 —7465
[15 ]  Cai Q , Yang L , Yu L. Thin Solid Films , 2006 , 515 : 1802 —1806
[16 ]  Yin Y X, Jin Z G, Hou F , et al . J . Am. Ceram. Soc. , 2007 , 90 :2384 —2389
[17 ]  Albu S P , Ghicov A , Macak J M, et al . Phys. Status Solidi : Rapid Research Letters , 2007 , 1 : R65 —R67
[18 ]  Macak J M, Tsuchiya H , Ghicov A , et al . Current Opinion in Solid State and Materials Science , 2007 , 11 : 3 —18
[19 ]  Richter C , Wu Z, Panaitescu E , et al . Adv. Mater. , 2007 , 19 :946 —948
[20 ]  Nguyen Q A , Bhargava Y V , Devine T M, Electrochemistry Communications , 2008 , 10 : 471 —475
[21 ]  Chen X, Schriver M, Suen T, et al . Thin Solid Films , 2007 , 515 :8511 —8514
[22 ]  Prakasam H E , Shankar K, Paulose M, et al . J . Phys. Chem. C ,2007 , 111 : 7235 —7241
[23 ]  Gong D , Grimes C A , Varghese O K, et al . J . Mater. Res. , 2001 ,16 : 3331 —3334
[24 ]  Macak J M, Sirotna K, Schmuki P. Electrochimica Acta , 2005 , 50 :3679 —3684
[25 ]  Ghicov A , Tsuchiya H , Macak J M, et al . Electrochemistry Communications , 2005 , 7 : 505 —509
[26 ]  Christophersen M, Carstensen J , Foll H. Phys. Status Solidi A:Applied Research , 2000 , 182 : 103 —107
[27 ]  Christophersen M, Carstensen J , Voigt K, et al . Phys. Status Solidi A: Applied Research , 2003 , 197 : 34 —38
[28 ]  Ponomarev E A , Levy-Clement C. Electrochem. Solid2State Lett . ,1998 , 1 : 42 —45
[29 ]  Albu S P , Ghicov A , Macak J M, et al . Nano Lett . , 2007 , 7 :1286 —1289
[30 ]  Paulose M, Shankar K, Yoriya S , et al . J . Phys. Chem. B , 2006 ,110 : 16179 —16184
[31 ]  Macak J M, Aldabergerova S , Ghicov A , et al . Phys. Status Solidi A: Appl . Mater. Sci . , 2006 , 203 : R67 —R69
[32 ]  Yang Y, Wang X, Li L. Mater. Sci . Eng. B , 2008 , 149 : 58 —62
[33 ]  Tsuchiya H , Macak J M, Taveira L , et al . Electrochemistry Communications , 2005 , 7 : 576 —580
[34 ]  胡小玲(Hu X L) , 管萍( Guan P) . 化学分离原理与技术(Principle and Technology of Chemical Seperation) . 北京: 化学工业出版社(Beijing : Chemical Industry Press) , 2006. 64 —68

[1] Han Fei, Lu Anhui, Li Wencui* . Structure Controlled Carbon-Based Materials for Lithium Ion Battery [J]. Progress in Chemistry, 2012, 24(12): 2443-2456.
[2] Zhu Xufei, Han Hua, Qi Weixing, Lu Chao, Jiang Longfei, Duan Wenqiang. Theoretical Foundation and Limitation of Two-Step Anodizing Technology [J]. Progress in Chemistry, 2012, 24(11): 2073-2086.
[3] Wang Jiashu, Pan Guoshun, Guo Dan. Catalyst Layer Structure of Membrane Electrode Assemblies in PEMFC [J]. Progress in Chemistry, 2012, (10): 1906-1914.
[4] Song Yingpan, Feng Miao, Zhan Hongbing. Applications of Graphene Nanocomposites in Electrochemical Biosensors [J]. Progress in Chemistry, 2012, (9): 1665-1673.
[5] Wang Fuqing, Chen Jian, Zhang Feng, Yi Baolian. Polyanion-Type Cathode Materials for Li-Ion Batteries [J]. Progress in Chemistry, 2012, 24(08): 1456-1465.
[6] Chu Daobao, Li Jian, Yuan Ximei, Li Zilong, Wei Xu, Wan Yong. Tin-Based Alloy Anode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2012, 24(08): 1466-1476.
[7] Tian Yong, Wang Jia, Zhong Guoying, Lin Hansen, Wang Xiufang. Synthesis and New Application of Magnetic Ordered Mesoporous Carbons [J]. Progress in Chemistry, 2012, 24(07): 1270-1276.
[8] Zhuo Qiongfang, Yang Bo, Deng Shubo, Huang Jun, Wang Bin, Yu Gang. Electrochemical Anodic Materials Used for Degradation of Organic Pollutants [J]. Progress in Chemistry, 2012, 24(04): 628-636.
[9] Zhou Guanwei, He Yushi, Yang Xiaowei, Gao Pengfei, Liao Xiaozhen, Ma Zifeng. Graphene-Containing Composite Materials for Lithium-Ion Batteries Applications [J]. Progress in Chemistry, 2012, 24(0203): 235-245.
[10] Lu Lin, Li Xiaogang, Gao Jin. Localized Electrochemical Study on the Interface Corrosion Between Organic Coating/Metal Substrate [J]. Progress in Chemistry, 2011, 23(8): 1618-1626.
[11] Zhao Dan, Wang Yan, Zhao Min. Bioelectrochemistry of Laccase [J]. Progress in Chemistry, 2011, 23(6): 1224-1236.
[12] Zhao Ruirui, Zhu Limin, Yang Hanxi. Radical Polymer——A New Class of High Performance Electrode Materials for Rechargeable Batteries [J]. Progress in Chemistry, 2011, 23(0203): 302-309.
[13] Xia Lan, Li Suli, Ai Xinping, Yang Hanxi. Safety Enhancing Methods for Li-Ion Batteries [J]. Progress in Chemistry, 2011, 23(0203): 328-335.
[14] Zhou Yongning, Fu Zhengwen. Nanostructured Thin Film Electrode Materials for Lithium Ion Battery [J]. Progress in Chemistry, 2011, 23(0203): 336-348.
[15] Li Juntao, Fang Junchuan, Su Hang, Sun Shigang. Interfacial Processes of Lithium Ion Batteries by FTIR Spectroscopy [J]. Progress in Chemistry, 2011, 23(0203): 349-356.