中文
Announcement
More
Progress in Chemistry 2008, Vol. 20 Issue (12): 1987-1997 Previous Articles   Next Articles

• Review •

siloxane-based polymer electrolytes

Cui Mengzhong1,2** Li Zhuyun3 Zhang Jie1 Feng Shengyu1**

  

  1. (1. School of Chemistry and Chemical Technology, Shandong University, Jinan 250100, China; 2. Institute of Chemical Engineering and Materials, Yantai University, Yantai 264005, China; 3. Department of Applied Chemistry, Yantai University, Yantai 264005, China)
  • Received: Revised: Online: Published:
  • Contact: Cui Mengzhong; Feng Shengyu
PDF ( 2650 ) Cited
Export

EndNote

Ris

BibTeX

The core technology of polymer lithium-ion battery is developing the polymer electrolyte materials with high ionic conductivity, suitable mechanical properties, stable chemical and electrochemical properties. Among many research works for high-performance polymer electrolytes, siloxane-based polymer electrolytes with the versatile the molecular structure design, synthesis easy implementation, excellent and electrochemical performance and conductivity at r. t. have been concerned as an important field. The design and synthesis of new polisiloxane-based polymer electrolytes in recent years are reviewed. It focuses on the research of polymer electrolytes by blend, interpenetrating polymer network structure, crosslinked network structure and inorganic-organic composite of polysiloxane block and graft copolymers. The progress of research methods and the application of polysiloxane-based polymer electrolyte are introduced.

CLC Number: 

[1 ] MacCallum J R , Vincent C A. Polymer Electrolyte Reviews 1 & 2. London : Elsevier , 1987. 4 —11
[2 ] Gray F M. Solid Polymer Electrolytes Fundamental and Technological Applications. New York : VCH , 1991. 8 —9
[3 ] Gray F M. Polymer Electrolytes , RSC Materials Monographs.Cambridge : The Royal Society of Chemistry , 1997. 1 —3
[4 ] Fenton D E , Parker J M, Wright P V. Polymer , 1973 , 14 :589 —591
[5 ] Shriver D F , Bruce P G. Solid State Electrochemistry(ed. Bruce P G) . Cambridge : Cambridge University Press , 1995. 95
[6 ] Nagaoka K, Naruse H , Shinohara I , et al . J . Polym. Sci . ,Polym. Lett . Ed. , 1984 , 22 : 659 —663
[7 ] Hall P G, Davis G R , McIntyre J E , Le Brocq K M F , et al .Polym. Commun. , 1986 , 27 : 98 —100
[8 ] Fish D , Khan I M, Smid J . Macromol . Chem. Rapid.Commun. , 1986 , 7 : 115 —120
[9 ] Fish D , Khan I M, Smid J . Br. Polym. J . , 1988 , 20 : 281 —288
[10] Morales E , Acosta J L. Electrochim. Acta , 1999 , 45 ( 7 ) :1049 —1056
[11] Sun J Z, Macfarlane D R , Foysyth M. Journal of Polymer Science , Part A: Polymer Chemistry , 1993 , 34 : 3465 —3470
[12] Fonseca C P , Neves S. J . Power Sources , 2002 , 104 : 85 —89
[13] Hooper R , Lyons L J , Moline D A , et al . Organometallics , 1999 ,18 (17) : 3249 —3251
[14] Hooper R , Lyons L J , MapesM K, et al . Macromolecules , 2001 ,34 : 931 —936
[15] Siska D P , Shriver D F. Chem. Mater. , 2001 , 13 : 4698 —4700
[16] Snyder J F , Hutchison J C , Ratner M A , Shriver D F. Chem.Mater. , 2003 , 15 : 4223 —4230
[17] Snyder J F , Ratner M A , Shriver D F. J . Electrochem. Soc. ,2003 , 150 : A1090 —A1094
[18] Noto V D , Vittadello M. Electrochimica Acta , 2005 , 50 : 3998 —4006
[19] Noto V D , Vittadello M, Jayakody R P , et al . Electrochimica Acta , 2005 , 50 : 4007 —4014
[20] Kang J J , Fang S B. Polym. Bull . , 2002 , 49 : 127 —134
[21] Lee I J , Song G S , Lee W S , Suh D H. Journal of Power Sources ,2003 , 114 : 320 —329
[22] Kang J , Li W, Wang X, Fang S , et al . Electrochimica Acta ,2003 , 48 : 2487 —2491
[23] Shibata M, Kobayashi T, Yosomiya R , et al . European Polymer Journal , 2000 , 36 : 485 —490
[24] Bozkurt A , Parlak M, Ercelebi C , et al . Journal of Applied Polymer Science , 2002 , 85 : 52 —56
[25] Gunaydin O , Toppare L , Yagci Y, et al . Polym. Bull . , 2002 ,47 (6) : 501 —508
[26] Walkowiak M, Schroeder G, Gierczyk B , et al . Electrochemistry Communications , 2007 , 9 : 1558 —1562
[27] Oh B , Hyung Y E , Vissers D R , et al . Electrochimica Acta ,2003 , 48 : 2215 —2220
[28] Zhang Z, Fang S B. Electrochimica Acta , 2000 , 45 ( 13 ) :2131 —2138
[29] Zhang Z, Sherlock D , West R , et al . Macromolecules , 2003 ,36 : 9176 —9180
[30] Kang Y, Lee W, Suh D H , et al . Journal of Power Sources ,2003 , 119P121 : 448 —453
[31] Lee J , Kang Y, Suh D H , et al . Electrochimica Acta , 2004 , 50 :351 —356
[32] Kang Y, Lee J , Suh D H , et al . Journal of Power Sources , 2005 ,146 : 391 —396
[33] Kang Y, Lee J , Lee J , et al . Journal of Power Sources , 2007 ,165 : 92 —96
[34] Liang W, Kuo P. Polymer , 2004 , 45 : 1617 —1626
[35] Liang W, Kuo P. Macromolecules , 2004 , 37 : 840 —845
[36] Zhang Z C , Jin J J , Bautista F , West R , et al . Solid State Ionics , 2004 , 170 : 233 —238
[37] De Souza P H , Bianchi R F , Bonagamba T J , et al . Chem.Mater. , 2001 , 13 (10) : 3685 —3692
[38] Fuentes S , Retuert P J , González G. Electrochimica Acta , 2003 ,48 : 2015 —2019
[39] Inada T, Takada K, Kajiyama A , et al . Solid State Ionics. 2003 ,158 : 275 —280
[40] Vittadello M, Biscazzo S , Lavina S , Di Noto V , et al . Solid State Ionics , 2002 , 147 : 341 —347
[41] Lin C , Kao H M, Wu R R , et al . Macromolecules , 2002 , 35 :3083 —3096
[42] Nakahara H , Yoon S , Piao T, Nutt S , et al . Journal of Power Sources , 2006 , 158 (1) : 591 —599
[43] Nakahara H , Yoon S , Nutt S. Journal of Power Sources , 2006 ,158 (1) : 600 —607
[44] Nakahara H , Nutt S. Journal of Power Sources , 2006 , 158 (2) :1386 —1393
[45] Nakahara H , Nutt S. Journal of Power Sources , 2006 , 160 :1355 —1360
[46] Donos J P , Lopes L V S , Pawlicka A , et al . Electrochimica Acta.2007 , 53 : 1455 —1460
[47] Kalfat R , Ali M B , Mlika R , et al . International Journal of Inorganic Materials , 2000 , 2 : 225 —231
[48] Oh B , Vissers D , Zhang Z, et al . Journal of Power Sources ,2003 , 119P121 : 442 —447
[49] Noda K, Yasuda T, Nishi Y. Electrochimica Acta , 2004 , 50 :243 —246
[50] Inose T, Tada S , Morimoto H , Tobishima S. Journal of Power Sources , 2006 , 161 : 550 —559
[51] Kim W, Cho J , Kang Y, et al . Journal of Power Sources , 2007 ,Inpress
[52] Gozdz A S , Schmutz C N , Tarascon J . US 5 296 318 , 1994
[53] Gozdz A S , Schmutz C N , Tarascon J , et al . US 5 418 091 , 1995
[54] Gozdz A S , Schmutz C N , Tarascon J , et al . US 5 429 891 , 1995
[55] Roshio U. Industry Materials (Japanese) , 1999 , 47 (2) : 21 —24
[56] Katsuzi A. Industry Materials (Japanese) , 1999 , 47 (2) : 25 —29

[1] Guohui Zhu, Hongxian Huan, Dawei Yu, Xueyi Guo, Qinghua Tian. Selective Recovery of Lithium from Spent Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(2): 287-301.
[2] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[3] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[4] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[5] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.
[6] Guoyong Huang, Xi Dong, Jianwei Du, Xiaohua Sun, Botian Li, Haimu Ye. High-Voltage Electrolyte for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(5): 855-867.
[7] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[8] Qiuyan Liu, Xuefeng Wang, Zhaoxiang Wang, Liquan Chen. Composite Solid Electrolytes with High Contents of Ceramics [J]. Progress in Chemistry, 2021, 33(1): 124-135.
[9] Jiamiao Chen, Jingwen Xiong, Shaomin Ji, Yanping Huo, Jingwei Zhao, Liang Liang. All Solid Polymer Electrolytes for Lithium Batteries [J]. Progress in Chemistry, 2020, 32(4): 481-496.
[10] Jinglun Wang, Qin Ran, Chongyu Han, Zilong Tang, Qiduo Chen, Xueying Qin. Organosilicon Functionalized Electrolytes for Lithium-Ion Batteries [J]. Progress in Chemistry, 2020, 32(4): 467-480.
[11] Guange Wang, Huaning Zhang, Tong Wu, Borui Liu, Qing Huang, Yuefeng Su. Recycling and Regeneration of Spent Lithium-Ion Battery Cathode Materials [J]. Progress in Chemistry, 2020, 32(12): 2064-2074.
[12] Qingkai Zhang, Feng Liang, Yaochun Yao, Wenhui Ma, Bin Yang, Yongnian Dai. Sodium-Based Solid-State Electrolyte and Its Applications in Energy [J]. Progress in Chemistry, 2019, 31(1): 210-222.
[13] Wuwei Yan, Yongning Liu, Shaokun Chong, Yaping Zhou, Jianguo Liu, Zhigang Zou. Lithium-Rich Cathode Materials for High Energy-Density Lithium-Ion Batteries [J]. Progress in Chemistry, 2017, 29(2/3): 198-209.
[14] Shi Jingjing, Guo Xing, Chen Renjie, Wu Feng. Recent Progress in Flexible Battery [J]. Progress in Chemistry, 2016, 28(4): 577-588.
[15] Chen Ruwen, Tu Xinman, Chen Dezhi. Transition Metal Nitrides for Lithium-Ion Batteries [J]. Progress in Chemistry, 2015, 27(4): 416-423.
Viewed
Full text


Abstract

siloxane-based polymer electrolytes