中文
Announcement
More
Progress in Chemistry 2008, Vol. 20 Issue (10): 1447-1452   Next Articles

• Review •

Application of In Situ FTIR to Deactivation by Coke Deposition

Zhu Ning; Wang Yang; Chen Fengqiu**; Zhan Xiaoli   

  1. (UNILAB Research Center for Chemical Reaction Engineering, Zhejiang University, Hangzhou 310027, China)
  • Received: Revised: Online: Published:
  • Contact: Chen Fengqiu
PDF ( 1580 ) Cited
Export

EndNote

Ris

BibTeX

The advantages of in-situ Fourier transform infrared (FTIR) spectrometry to coke deposition during catalytic process of Petrochemical industry, including catalytic isomerization, reduction, and cracking are reviewed in this paper. The mechanisms of coke deposition over solid acid catalysts and bi-functional noble metal acid catalysts are summarized. The causes of coke formation under different temperatures are also discussed. Bases on the preliminary results of catalytic cracking of n-heptane over zeolites in our work, identification and assignment of IR absorption bands for coked substances as the key issues on application of in sute FTIR are put forword. Extended applications to the mechanisms of other catalytic reactions and the properties of catalysts are proposed.

CLC Number: 

[ 1 ] Gallezot P , Leclercq C , Guisnet M, et al . J . Catal . , 1988 , 114 :100 —111
[ 2 ] Magnoux P , Guisnet M, Mignard S , et al . J . Catal . , 1989 ,117 : 495 —502
[ 3 ] Magnoux P , Guisnet M. Zeolites , 1989 , 9 : 329 —335
[ 4 ] Magnoux P , Canaff C , Guisnet M, et al . J . Catal . , 1992 , 134 :286 —298
[ 5 ] Callejas M A , Martnez M T , Blasco T , et al . Appl . Catal . A ,2001 , 218 : 181 —188
[ 6 ] Kortunov P , Vasenkov S , K? rger J , et al . J . Am. Chem. Soc. ,2005 , 127 : 13055 —13059
[ 7 ] Jiang Y, Huang J , Reddy MV R , et al . Microporous Mesoporous Mater. , 2007 , 105 : 132 —139
[ 8 ] Zaikovskii V I , Vosmerikov A V , Anufrienko V F , et al . Kinet .Catal . , 2006 , 47 : 389 —394
[ 9 ] Nowak L , Lezanska M, Rozwadowski M, et al . Appl . Surf .Sci . , 2002 , 201 : 182 —190
[10] Shamsi A , Baltrus J P , Spivey J . J . Appl . Catal . A , 2005 ,293 : 145 —152
[11] Siri GJ , Ramallo2López J M, Casella ML , et al . Appl . Catal .A , 2005 , 278 : 239 —249
[12] Josl R , Klingmann R , Traa Y, et al . Catal . Commun. , 2004 ,5 : 239 —241
[13] Martín N , Viniegra M, Zarate R , et al . Catal . Today , 2005 ,107/108 : 719 —725
[14] Sánchez-Galofré O , Segura Y, Pérez-Ramírez J . J . Catal . ,2007 , 249 : 123 —133
[15] Wei Y, Zhang D , Liu Z , et al . Chem. Phys. Lett . , 2007 , 444 :197 —201
[16] Kortum G, Delfs H. Spectrochim. Acta , 1964 , 20 , 405 —413
[17] Niwa M, Hattori T , Takahasi M, et al . Anal . Chem. , 1979 , 51 :46 —49
[18] Donk S V , Bus E , Broersma A , et al . Appl . Catal . A , 2002 ,237 : 149 —159
[19] Domokos L , Lefferts L , Seshan K, et al . J . Mol . Catal . A:Chem. , 2000 , 162 : 147 —157
[20] Chou Y H , Cundy C S , Garforth A A , et al . Microporous Mesoporous Mater. , 2006 , 89 : 78 —87
[21] Andy P , Gnep N S , Guisnet M, et al . J . Catal . , 1998 , 173 :322 —332
[22] Finelli Z R , Querini C A , Fígoli N S , et al . Appl . Catal . A ,1999 , 187 : 115 —125
[23] Pazé C , Zecchina A , Spera S , et al . Phys. Chem. Chem.Phys. , 2000 , 2 : 5756 —5760.
[24] Fêttinger K, Vinek H. Catal . Lett . , 2004 , 97 : 131 —138
[25] Fêttinger K, Kinger G, Vinek H. Appl . Catal . A , 2004 , 226 :195 —202
[26] Karge H G, Niessen W, Bludau H I. Appl . Catal . A , 1996 ,146 : 339 —349
[27] Kondo J N , Yang S , Zhu Q , et al . J . Catal . , 2007 , 248 :53 —59
[28] Krishna K, Makkee M. Appl . Catal . B , 2005 , 59 : 35 —44
[29] Neuber M, Karge H G, Weitkamp J . Catal . Today , 1988 , 3 :11 —22
[30] Karge H G, Nieβen W, Bludau H. Appl . Catal . A , 1996 , 146 :339 —349
[31] Bauer F , Karge H G. Molecular Sieves-Science and Technology : Characterization II , Berlin : Springer Berlin/Heidelberg , 2006 ,249 —364.
[32] Fê ttinger K, Kinger G, Vinek H. Catal . Lett . , 2003 , 85 : 117 —122
[33] Guisnet M, Magnoux P. Appl . Catal . A , 2001 , 212 : 83 —96
[34] Captain D K, Amiridis M D. J . Catal . , 1999 , 184 : 377 —389
[35] Sarbak Z. React . Kinet . Catal . Lett . , 2000 , 69 : 177 —181
[36] Schieβer W, Vinek H , Jentys A. Appl . Catal . B , 2001 , 33 :263 —274
[37] Meunier F C , Zuzaniuk V , Breen J P , et al . Catal . Today ,2000 , 59 : 287 —304
[38] Todorova S , Su B L. J . Mol . Catal . A: Chem. , 2003 , 201 :223 —235
[39] Shimizu K, Kawabata H , Satsuma A , Hattori T. J . Phys. Chem.B , 1999 , 103 : 5240 —5245
[40] 刘雪斌(Liu X B) ,朱海欧(Zhu H O) ,葛庆杰(Ge Q J ) ,et al .化学进展(Progress in Chemistry) , 2004 , 16(6) : 900 —910
[41] Donna G, Blackmond , James G, et al . J . Catal . , 1982 , 78 :34 —43
[42] Gil B , Mierzyńska K, Szczerbińska M, et al . Microporous Mesoporous Mater. , 2007 , 99 : 328 —333
[43] Datka J , Gil B. Microporous Mesoporous Mater. , 2007 , 103 :225 —229
[44] 金国杰(Jin G J) , 郭杨龙(Guo Y L) ,刘晓辉(Liu X H) 等. 化学学报(Acta Chimica Sinica) , 2006 , 64(19) : 1941 —1946
[45] Caeiro G, Lopes J M, Magnoux P , et al . J . Catal . , 2007 , 249 :234 —243
[46] Figueiredo H , Neves I C , Quintelas C , et al . Appl . Catal . B ,2006 , 66 , 274 —280
[47] Ménorval B , Ayrault P , Gnep N S , et al . J . Catal . , 2005 , 230 :38 —51
[48] Mat R , Amin N A S , Ramli Z , et al . J . Nat . Gas Chem. ,2006 , 15 : 259 —265
[49] Simon-Masseron A , Marques J P , Lopes J M, et al . Appl . Catal .A , 2007 , 316 : 75 —82
[50] Luan Z , Fournier J A. Microporous Mesoporous Mater. , 2005 ,79 : 235 —240
[51] Martins A , Silva J M, Henriques C , et al . Catal . Today , 2005 ,107/108 : 663 —670
[52] Ungureanu A , Hoang T V , On D T , et al . Appl . Catal . A ,2005 , 294 : 92 —105
[53] 李丽(Li L) , 阎子峰( Yan Z F) . 化学进展( Progress in Chemistry) , 2005 , 17(4) : 651 —658

[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[4] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[5] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[6] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[7] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[8] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[9] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[10] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[11] Yiqiang Liu, Yimei Qiu, Xing Tang, Yong Sun, Xianhai Zeng, Lu Lin. Glucose Isomerization into Fructose by Chemocatalytic Route [J]. Progress in Chemistry, 2021, 33(11): 2128-2137.
[12] Andong Hu, Shungui Zhou, Jie Ye. The Mechanism, Progress and Prospect of Biohybrid Mediated Semi-Artificial Photosynthesis [J]. Progress in Chemistry, 2021, 33(11): 2103-2115.
[13] Mengting Xu, Yanqing Wang, Ya Mao, Jingjuan Li, Zhidong Jiang, Xianxia Yuan. Cathode Catalysts for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2021, 33(10): 1679-1692.
[14] Huina Zou, Shoufei Zhu. Progresses of 1,10-Phenanthroline Type Ligands in Fe/Co/Ni Catalysis [J]. Progress in Chemistry, 2020, 32(11): 1766-1803.
[15] Wenhao Wu, Wen Lei, Liqiong Wang, Sen Wang, Haijun Zhang. Preparation of Single Atom Catalysts [J]. Progress in Chemistry, 2020, 32(1): 23-32.