中文
Announcement
More
Progress in Chemistry 2008, Vol. 20 Issue (0708): 1233-1240 Previous Articles   

• Review •

Mechanism of Energy Generation of Microbial Fuel Cells

Lu Na1,2 Zhou Shungui2 Ni Jinren1**   

  1. (1.Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; 2.Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environment and Soil Sciences, Guangzhou 510650, China)
  • Received: Revised: Online: Published:
  • Contact: Ni Jinren
PDF ( 4128 ) Cited
Export

EndNote

Ris

BibTeX

Microbial fuel cell(MFCs) are the emerging technology for producing electricity directly from biodegradable organic matter using bacteria as catalyst. One of the most promising applications for MFCs is to use them simultaneously treating organic wastes while accomplishing power generation. The main problems for MFC are low electron transfer and power density.The electron transfer from microbial cell to the fuel cell anode, as a process that links microbiology and electrochemistry, represents a key factor that defines the MFC power and energy output. In the paper, five key steps including fuel bio-oxidation, electron transfer to anode, electron transfer through the external circuit, proton diffusion and cathode reaction for electricity generation by MFC systems are identified and discussed in detail. Finally, the potential study directions in the future are prospected.

CLC Number: 

[ 1 ] Park D H , Zeikus J G. Biotechnol . Bioeng. , 2003 , 81 : 348 —355
[ 2 ] Gil G C , Chang I S , Kim B H , et al . Biosen. Bioelectron. ,2003 , 18 : 327 —334
[ 3 ] Liu H , Ramnarayanan R , Logan B E. Environ. Sci . Technol . ,2004 , 38 : 2281 —2285
[ 4 ] Liu H , Logan B E. Environ. Sci . Technol . , 2004 , 38 (14) :4040 —4046
[ 5 ] Min B , Logan B E. Environ. Sci . Technol . , 2004 , 38 (21) :5809 —5814
[ 6 ] He Z , Minteer S D , Angenent L T. Environ. Sci . Technol . ,2005 , 39(14) : 5262 —5267
[ 7 ] Potter M C. Proc. R. Soc. Lond. B , 1911 , 84 : 2760 —2761
[ 8 ] 关毅( Guan Y) , 张鑫( Zhang X) . 化学进展( Progress in Chemistry) , 2007 , 19(1) : 74 —79
[ 9 ] Kim H J , Park H S , Hyun M S , et al . Enzyme Microbiol .Technol . , 2002 , 30 : 145 —152
[10] Lovley D R. Nat . Rev. Microbiol . , 2006 , 4 : 497 —508
[11] Nevin K P , Lovley D R. Environ. Microbio1. , 2002 , 68 (4) :2294 —2299
[12] Roller S D. J . Chem. Technol . Biotechnol . , 1984 , 34(1) : 3 —12
[13] McKinlay J B , Zeikus J G. Appl . Environ. Microbiol . , 2004 , 70(6) : 3467 —3474
[14] Choi Y, KimN , Kim S , et al . Bull . Korean Chem. Soc. , 2003 ,24(4) : 437 —440
[15] Newman D K, Kolter R. Nature , 2000 , 405 : 94 —97
[16] Habermann W, Pommer E H. Appl . Microbiol . Biotechnol . ,1991 , 35(1) : 128 —133
[17] Rabaey K, Boon N , Hofte M, et al . Environ. Sci . Technol . ,2005 , 39 : 3401 —3408
[18] Kim B H , Kim H J , Hyun M S , et al . J . Microbiol .Biotechnol . , 1999 , 9 : 127 —131
[19] Rabaey K, Boon N , Siciliano S D , et al . Appl . Environ.Microbiol . , 2004 , 70(9) : 5373 —5382
[20] Moon H , Chang I S , Kim B H. Bioresource Technology , 2006 ,97 : 621 —627
[21] Back J H , Kim M S , Cho H , et al . FEMS Microbiol . Lett . ,2004 , 238 : 65 —70
[22] Holmes D E , Bond D R , OpNeil R A , et al . Microbiol . Ecology ,2004 , 48 : 178 —190
[23] Park H S , Kim B H , Kim H S , et al . Anaerobe , 2001 , 7 : 297 —306
[24] Chaudhuri S K, Lovley D R. Nat . Biotechnol . , 2003 , 21 :1229 —1232
[25] Logan B E , Regan J M. Trend in Microbiology , 2006 , 14 (12) :512 —518
[26] Bond D R , Holmes D E , Tender L M, et al . Science , 2002 ,295 : 483 —485
[27] Reimers C E , Tender L M, Fertig S , et al . Environ. Sci .Technol . , 2001 , 35(1) : 192 —195
[28] Chang I S , Hyunsoo M, Orianna B , et al . J . Microbiol .Biotechnol . , 2006 , 16(2) : 163 —177
[29] Lee J , Phung N T , Chang I S , et al . FEMS Microbiol . Lett . ,2003 , 223 : 185 —191
[30] Phung N T , Lee J , Kang K H , et al . FEMS Microbiol . Lett . ,2004 , 233 : 77 —82
[31] Beliaev A S , Saffarini D A , McLaughlin J L , et al . Mol .Microbiol . , 2001 , 39(3) : 722 —730
[32] Lovley D R , Holmes D E , Nevin K P. Adv. Microb. Physiol . ,2004 , 49 : 219 —286
[33] Heidelberg J F , Paulsen I T , Nelson K E , et al . Nat . Biotech. ,2002 , 20 : 1118 —1123
[34] Reguera G, Carthy K D , Loveley D R , et al . Nature , 2005 ,435 : 1098 —1101
[35] Veag C A , Fernandez I. Bioelectrochem. Bioenerg. , 1987 , 17 :217 —222
[36] Park D H , Zeikus J G. Appl . Environ. Microbiol . , 2000 , 66(4) : 1292 —1297
[37] Tanaka K, Vega C A , Tamamushi R. Bioelectrochem.Bioenerg. , 1983 , 11 : 289 —297
[38] Schrêder U. Phys. Chem. Chem. Phys. , 2007 , 9 : 2619 —2629
[39] Hernandez M E , Newman D K. Cell . Mol . Life Sci . , 2001 , 58 :1562 —1571
[40] Newman D K. Science , 2001 , 292 : 1312 —1313
[41] Newman D K, Kolter R. Nature , 2000 , 405 : 94 —97
[42] Lovley D R. Curr. Opin. Biotechnol . , 2006 , 17(3) : 327 —332
[43] Madigan M T , Martink J M, Parker J . Brock Biology of Microorganisms , 8th ed. NJ : Prentice Hall , 1999
[44] Rabaey K, Sompel K, Maignien L , et al . Environ. Sci .Technol . , 2006 , 40(17) : 5218 —5224
[45] Schrêder U , Nieoen J , Scholz F. Angewandte Chemie , 2003 ,115 : 2986 —2989
[46] Menicucci J , Beyenal H , Marsili E , et a1. Environ. Sci .Technol . , 2006 , 40 (3) : 1062 —1068
[47] Liu H , Cheng S A , Logan B E. Environ. Sci . Technol . , 2005 ,39 : 5488 —5493
[48] Oh S E , Logan B E. Appl . Microbiol . Biotechnol . , 2005 , 70(2) : 162 —169
[49] Min B , Cheng S , Logan B E. Water Res. , 2005 , 39 : 1675 —1686
[50] Logan B E , Murano C , Scott K, et al . Water Res. , 2005 , 39 :942 —952
[51] Oh S , Min B , Logan B E. Environ. Sci . Technol . , 2004 , 38 :4900 —4904
[52] Cheng S A , Liu H , Logan B E. Environ. Sci . Technol . , 2006 ,40 : 2426 —2432
[53] Morris J M, Jin S , Wang J Q , et al . Electrochem. Commun. ,2007 , 9(7) : 1730 —1734
[54] Pham T H , Jang J K, Chang I S , et al . J . Microbiol .Biotechnol . , 2004 , 14 : 324 —329
[55] Cheng S , Liu H , Logan B E. Electrochemistry Communications ,2006 , 8 : 489 —494
[56] Rhoads A , Beyenal H , Lewandowshi Z. Environ. Sci . Technol . ,2005 , 39 : 4666 —4671
[57] Cohen B. J . Bacteriol . , 1931 , 21 : 18

[1] Congyuan Zhao, Jing Zhang, Zheng Chen, Jian Li, Lielin Shu, Xiaoliang Ji. Effective Constructions of Electro-Active Bacteria-Derived Bioelectrocatalysis Systems and Their Applications in Promoting Extracellular Electron Transfer Process [J]. Progress in Chemistry, 2022, 34(2): 397-410.
[2] Gang Lin, Yuanyuan Zhang, Jian Liu. Bioinspired Photo/(Electro)-Catalytic NADH Regeneration [J]. Progress in Chemistry, 2022, 34(11): 2351-2360.
[3] Jia Liu, Jun Shi, Kun Fu, Chao Ding, Sicheng Gong, Huiping Deng. Heterogeneous Catalytic Persulfate Oxidation of Organic Pollutants in the Aquatic Environment: Nonradical Mechanism [J]. Progress in Chemistry, 2021, 33(8): 1311-1322.
[4] Yong Feng, Yu Li, Guangguo Ying. Micro-Interface Electron Transfer Oxidation Based on Persulfate Activation [J]. Progress in Chemistry, 2021, 33(11): 2138-2149.
[5] Lixiang Chen, Yidi Li, Xiaochun Tian, Feng Zhao. Electron Transfer in Gram-Positive Electroactive Bacteria and Its Application [J]. Progress in Chemistry, 2020, 32(10): 1557-1563.
[6] Xiaochun Tian, Xue'e Wu, Feng Zhao, Yanxia Jiang, Shigang Sun. Research on Mechanisms of Microbial Extracellular Electron Transfer by Electrochemical Integrated Technologies [J]. Progress in Chemistry, 2018, 30(8): 1222-1227.
[7] Shufen Fan, Jia Xin, Jingyi Huang, Weili Rong, Xilai Zheng. Effectiveness of Electron Transfer and Electron Competition Mechanism in Zero-Valent Iron-Based Reductive Groundwater Remediation Systems [J]. Progress in Chemistry, 2018, 30(7): 1035-1046.
[8] Shiying Yang, Tengfei Ren, Yixuan Zhang, Di Zheng, Jia Xin. ZVI/Oxidant Systems Applied in Water Environment and Their Electron Transfer Mechanisms [J]. Progress in Chemistry, 2017, 29(4): 388-399.
[9] Mingxue Liu, Faqin Dong, Xiaoqin Nie, Congcong Ding, Huichao He, Gang Yang. Reduction of Heavy Metal Ions Mediated by Photoelectron-Microorganism Synergistic Effect and Electron Transfer Mechanism [J]. Progress in Chemistry, 2017, 29(12): 1537-1550.
[10] Ma Jinlian, Ma Chen, Tang Jia, Zhou Shungui, Zhuang Li. Mechanisms and Applications of Electron Shuttle-Mediated Extracellular Electron Transfer [J]. Progress in Chemistry, 2015, 27(12): 1833-1840.
[11] Liu Lidan, Xiao Yong, Wu Yicheng, Chen Bilian, Zhao Feng. Electron Transfer Mediators in Microbial Electrochemical Systems [J]. Progress in Chemistry, 2014, 26(11): 1859-1866.
[12] Chang Dingming, Zhang Haiqin, Lu Zhihao, Huang Guangtuan, Cai Lankun, Zhang Lehua. Behavior of Metal Ions in Microbial Fuel Cells [J]. Progress in Chemistry, 2014, 26(07): 1244-1254.
[13] Xiao Yong, Wu Song, Yang Zhaohui, Zheng Yue, Zhao Feng. Isolation and Identification of Electrochemically Active Microorganisms [J]. Progress in Chemistry, 2013, 25(10): 1771-1780.
[14] Xu Jielong, Zhou Shungui, Yuan Yong, Wang Yueqiang, Zhuang Li. Live Wire: A Review on Electron Transfer Mechanism and Applications of Microbial Nanowires [J]. Progress in Chemistry, 2012, (9): 1794-1800.
[15] Zhang Weiwei, Zhong Xinxin, Si Yubing, Zhao Yi. Non-Condon Effect and Time-Dependent Wave-Packet Method on Electron Transfer [J]. Progress in Chemistry, 2012, 24(06): 1166-1174.