中文
Announcement
More
Progress in Chemistry 2008, Vol. 20 Issue (06): 951-956 Previous Articles   Next Articles

• Review •

Correlation Between Molecular Structure, Electric Property and Biological Activity of Protein

Guo Yan1 Gao Xiaoling2 Zhao Jianwei1** Tian Yanni2

  

  1. (1. Key laboratory of Analytical Chemistry for Life Science (Education Ministry of China), College of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210008, China; 2. Institute of Molecular Science, Shanxi University, Taiyuan 030006, China)
  • Received: Revised: Online: Published:
  • Contact: Jianwei Zhao
PDF ( 1931 ) Cited
Export

EndNote

Ris

BibTeX

In biological processes, many proteins are located in biomembrane, performing their biological activity, from respiration to energy conversion in vivo. As a result, the basic existing and functional form of protein is the one that can bear anisotropic stress. To devise and study the structure, mechanical and electrical/electrochemical properties of protein under anisotropic stress not only play an important role in understanding their bioactivity, but can promote application of proteins in bioelectronic devices. The studies on protein electric properties by using a conducting atomic force microscope have been reviewed. Under various anisotropic compressions, the protein molecular was subjected to different reconstructions, showing different electronic transportation behavior. On basis of the experimental observation, one can estimate the biological activity of the protein molecule.

CLC Number: 

[ 1 ] Page C C , Moser C C , Chen X X, Dutton P L. Nature , 1999 ,402 : 47 —52
[ 2 ] Reinerth W A , Jones L , Burgin T P , Zhou C W, Muller C J ,Deshpande M R , Reed M A , Tour J M. Nanotechnology , 1998 ,9 : 246 —250
[ 3 ] Holmlin R E , Haag R , Chabinyc M L , Magilov R F , Cohen A E ,Terfort A , Rampi M A , Whitesides G M. J . Am. Chem. Soc. ,2001 , 123 : 5075 —5085
[ 4 ] Kushmerick J G, Holt D B , Pollack S K, Ratner MA , Yang J C ,Schull TL , Naciri J , Moore M H , Shashidhar R. J . Am. Chem.Soc. , 2002 , 124 : 10654 —10655
[ 5 ] Sikes H D , Smalley J F , Dudek S P , Cook A R , Newton M D ,Chidsey C E D , Feldberg SW. Science , 2001 , 291 : 1519 —1523
[ 6 ] Pascher T , Chesick J P , Winkler J R , Gray HB. Science , 1996 ,271 : 1558 —1560
[ 7 ] Amstrong F A , Hill H A O , Walton N J . Acc. Chem. Res. ,1988 , 21 : 407 —413
[ 8 ] 董绍俊(Dong S J ) , 车广礼(Che G L) , 谢远武(Xie Y W) .化学修饰电极( 修订版) ( Chemically Modified Electrode )(2nd) . 北京: 科学出版社(Beijing : Science Press) , 2003
[ 9 ] Bendall D S. Protein Electron Transfer. Oxford : BIOS Scientific Publishers Ltd , 1996
[10] Bonanni B , Andolfi L , Bizzarri A R , Cannistraro S. J . Phys.Chem. B , 2007 , 111 : 5062 —5075
[11] Zhao J , Uosaki K. Langmuir , 2001 , 17 : 7784 —7788
[12] Zhao J , Uosaki K. Nano Lett . , 2002 , 2 : 137 —140
[13] Adman E T. Adv. Protein Chem. , 1991 , 42 : 145 —197
[14] Chi Q , Zhang J , Nielsen J U , Friis E P , Chorkendorff I , Canters G W, Andersen J E T , Ulstrup J . J . Am. Chem. Soc. , 2000 ,122 : 4047 —4055
[15] Zhao J , Davis J J , Sansom M S P , Hung A. J . Am. Chem.Soc. , 2004 , 126 : 5601 —5609
[16] Zhao J , Davis J J . Colloid Surf . B , 2005 , 40 : 189 —194
[17] 赵健伟(Zhao J W) , 王楠(Wang N) . 高等学校化学学报(Chem. J . Chinese University) , 2005 , 26 : 751 —753
[18] Zhao J W, Uosaki K. Appl . Phys. Lett . , 2003 , 83 : 2034 —2036
[19] Luo E Z , Lin S , Xie Z , Xu J B , Wilson I H , Yu Y H , Yu L J ,Wang X. Mater. Charact . , 2002 , 48 : 205 —210
[20] Davis J J , Wang N , Morgan A , Zhang T , Zhao J . Faraday Discussions , 2005 , 131 : 167 —179
[21] Gorman C B , Carroll R L , Fuierer R R. Langmuir , 2001 , 17 :6923 —6930
[22] Fan F R F , Lai R Y, Cornil J , Karzazi Y, Bredas J L , Cai L ,Cheng L , Yao Y, Price D WJr , Dirk S M, Tour J M, Bard AJ .J . Am. Chem. Soc. , 2004 , 126 : 2568 —2573
[23] Sutin N , Brunschwig B S , Creutz C. J . Phys. Chem. B , 2003 ,107 : 10687 —10690
[24] Davis J J , Morgan D A , Wrathmell C L , Axford D N , Zhao J ,Wang N. J . Mater. Chem. , 2005 , 15 : 2160 —2174
[25] Zhao J , Davis J J . Nanotechnology , 2003 , 14 : 1023 —1028
[26] Simmons J G. J . Appl . Phys. , 1963 , 34 : 1793 —1803
[27] Tian WD , Datta S , Hong S H , Reifenberger R , Henderson J I ,Kubiak C P. J . Chem. Phys. , 1998 , 109 : 2874 —2882
[28] 赵健伟(Zhao J W) , 史传国(Shi C G) , 周毅(Zhou Y) , 陈洪渊(Chen H Y) . 分析化学(Chin. J . Anal . Chem. ) , 2005 ,33 : 1494 —1498
[29] Zhao J , Uosaki K. J . Phys. Chem. B , 2004 , 108 : 17129 —17135
[30] Sarkar A , Robertson R B , Fernandez J M. Proc. Natl . Acad.Sci . USA , 2004 , 101 : 12882 —12886
[31] Bao G. J . Mech. Phys. Solids , 2002 , 50 : 2237 —2274
[32] Clausen2Schaumann H , Seitz M, Krautbauer R , Gaub H E. Curr.Opin. Chem. Biol . , 2000 , 4 : 524 —530
[33] Axford D , Davis J J , Wang N , Wang D , Zhang T , Zhao J , Peters B. J . Phys. Chem. B , 2007 , 111 : 9062 —9068

[1] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[2] Yanyan Wang, Limin Chen, Siyang Li, Luhua Lai. How Intrinsically Disordered Proteins Modulate Biomolecular Condensates [J]. Progress in Chemistry, 2022, 34(7): 1610-1618.
[3] Congyuan Zhao, Jing Zhang, Zheng Chen, Jian Li, Lielin Shu, Xiaoliang Ji. Effective Constructions of Electro-Active Bacteria-Derived Bioelectrocatalysis Systems and Their Applications in Promoting Extracellular Electron Transfer Process [J]. Progress in Chemistry, 2022, 34(2): 397-410.
[4] Gang Lin, Yuanyuan Zhang, Jian Liu. Bioinspired Photo/(Electro)-Catalytic NADH Regeneration [J]. Progress in Chemistry, 2022, 34(11): 2351-2360.
[5] Jia Liu, Jun Shi, Kun Fu, Chao Ding, Sicheng Gong, Huiping Deng. Heterogeneous Catalytic Persulfate Oxidation of Organic Pollutants in the Aquatic Environment: Nonradical Mechanism [J]. Progress in Chemistry, 2021, 33(8): 1311-1322.
[6] Yong Feng, Yu Li, Guangguo Ying. Micro-Interface Electron Transfer Oxidation Based on Persulfate Activation [J]. Progress in Chemistry, 2021, 33(11): 2138-2149.
[7] Weijia Zhang, Xueguang Shao, Wensheng Cai. Molecular Simulation of the Antifreeze Mechanism of Antifreeze Proteins [J]. Progress in Chemistry, 2021, 33(10): 1797-1811.
[8] Lixiang Chen, Yidi Li, Xiaochun Tian, Feng Zhao. Electron Transfer in Gram-Positive Electroactive Bacteria and Its Application [J]. Progress in Chemistry, 2020, 32(10): 1557-1563.
[9] Bin Qiao, Hongfei Chen, Hui Zhang, Chenxin Cai. Analysis and Detection of Tumor Exosomes [J]. Progress in Chemistry, 2019, 31(6): 847-857.
[10] Xiaochun Tian, Xue'e Wu, Feng Zhao, Yanxia Jiang, Shigang Sun. Research on Mechanisms of Microbial Extracellular Electron Transfer by Electrochemical Integrated Technologies [J]. Progress in Chemistry, 2018, 30(8): 1222-1227.
[11] Shufen Fan, Jia Xin, Jingyi Huang, Weili Rong, Xilai Zheng. Effectiveness of Electron Transfer and Electron Competition Mechanism in Zero-Valent Iron-Based Reductive Groundwater Remediation Systems [J]. Progress in Chemistry, 2018, 30(7): 1035-1046.
[12] Shiying Yang, Tengfei Ren, Yixuan Zhang, Di Zheng, Jia Xin. ZVI/Oxidant Systems Applied in Water Environment and Their Electron Transfer Mechanisms [J]. Progress in Chemistry, 2017, 29(4): 388-399.
[13] Mingxue Liu, Faqin Dong, Xiaoqin Nie, Congcong Ding, Huichao He, Gang Yang. Reduction of Heavy Metal Ions Mediated by Photoelectron-Microorganism Synergistic Effect and Electron Transfer Mechanism [J]. Progress in Chemistry, 2017, 29(12): 1537-1550.
[14] Ma Jinlian, Ma Chen, Tang Jia, Zhou Shungui, Zhuang Li. Mechanisms and Applications of Electron Shuttle-Mediated Extracellular Electron Transfer [J]. Progress in Chemistry, 2015, 27(12): 1833-1840.
[15] Ding Peng, Chen Xian, Li Xiuling, Qing Guangyan, Sun Taolei, Liang Xinmiao. The Separation and Enrichment of Glycoproteins or Glycopeptides Based on Nanoparticles [J]. Progress in Chemistry, 2015, 27(11): 1628-1639.