中文
Announcement
More
Progress in Chemistry 2008, Vol. 20 Issue (06): 821-827 Previous Articles   Next Articles

• Review •

Theoretical Studies of Nonideal Electrochemical Behavior of Self-assembled System

Guo Yan; Zhao Jianwei**

  

  1. (Key laboratory of Analytical Chemistry for Life Sciences, Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210008, China)
  • Received: Revised: Online: Published:
  • Contact: Zhao Jianwei
PDF ( 1364 ) Cited
Export

EndNote

Ris

BibTeX

Electrochemistry studies of self-assembled systems show the intermolecular interaction among the redox species can significantly influence the electrochemical behavior, exhibiting such as peak broadening or double peaks phenomena. Knowing these non-ideal electrochemical behaviors is very indispensible for the theoretical analysis of the thermodynamic and kinetic information of the system. Focusing on these issues, we summarize the theoretical models and formulism behind the experimental observation in this review. Understanding the underlying mechanism of how the intermolecular interaction affects the electrochemical non-idealities is not only instructive for surface electrochemistry, but also important for those research hotspots such as Host-guest recognition, molecular electron devices, and biosensors.

CLC Number: 

[ 1 ] Ulman A. An Introduction to Ultrathin Organic Films : from Langmuir-Blodgett to Self-assembly. San Diego , CA: Academic Press , 1991. 1 —238
[ 2 ] Love J C , Estroff L A , Kriebel J K, et al . Chem. Rev. , 2005 ,105 : 1103 —1169
[ 3 ] Norde W, Haynes C A. Proteins at Interfaces II , Fundamentals and Applications. San Diego , CA: American Chemical Society ,1995. 26 —40
[ 4 ] Adamson A W. Physical Chemistry of Surfaces (5th ed. ) . New York : John Wiley and Sons , 1990. 379 —389
[ 5 ] Sumner J J , Creager S E. J . Phys. Chem. B , 2001 , 105 :8739 —8745
[ 6 ] Chidsey C E D , Bertozzi C R , Putvinski T M, et al . J . Am.Chem. Soc. , 1990 , 112 : 4301 —4306
[ 7 ] Quist F , Tabard-Cossa V , Badia A. J . Phys. Chem. B , 2003 ,107 : 10691 —10695
[ 8 ] Laviron E. Electroanalytical Chemistry , Vol . 12. New York :Marcel Dekker , 1982. 53 —191
[ 9 ] Brown A P , Anson F C. Anal . Chem. , 1977 , 49 : 265 —272
[10] Brown A P , Anson F C. J . Electroanal . Chem. , 1977 , 83 :203 —206
[11] Laviron E. J . Electroanal . Chem. , 1974 , 52 : 395 —402
[12] Brown A P , Anson F C. Anal . Chem. , 1977 , 49 : 1589 —1595
[13] Smith D F , Willman K, Kuo K, et al . J . Electroanal . Chem. ,1979 , 95 : 217 —227
[14] Kano K, Uno B. Anal . Chem. , 1993 , 65 : 1088 —1093
[15] Matsuda H , Aoki K, Tokuda K. J . Electroanal . Chem. , 1987 ,217 : 1 —13
[16] Matsuda H , Aoki K, Tokuda K. J . Electroanal . Chem. , 1987 ,217 : 15 —32
[17] Rowe G K, Creager S E. J . Phys. Chem. , 1994 , 98 : 5500 —5507
[18] Creager S E , Rowe G K. Langmuir , 1994 , 10 : 1186 —1192
[19] Creager S E , Rowe G K. J . Electroanal . Chem. , 1997 , 420 :291 —299
[20] Smith C P , White H S. Anal . Chem. , 1992 , 64 : 2398 —2405
[21] Lane R F , Hubbard A T. J . Phys. Chem. , 1973 , 77 : 1413 —1418
[22] Oldham KB. J . Electroanal . Chem. , 1975 , 63 : 139 —156
[23] Hunter R J . Foundations of Colloid Science , Vol . 1. Oxford :Oxford University Press , 1987. 440 —447
[24] Honeychurch MJ . J . Electroanal . Chem. , 1998 , 445 : 63 —69
[25] Fawcett W R. J . Electroanal . Chem. , 1994 , 378 : 117 —124
[26] Levine S. J . Colloid Interface. Sci . , 1971 , 37 : 619 —634
[27] Uosaki K, Sato Y, Kita H. Langmuir , 1991 , 7 : 1510 —1514
[28] Rowe G K, Creager S E. Langmuir , 1991 , 7 : 2307 —2312
[29] Creager S E , Rowe G K. Anal . Chim. Acta , 1991 , 246 : 233 —239
[30] Sumner J J , Creager S E. J . Am. Chem. Soc. , 2000 , 122 :11914 —11920
[31] Ohtani M, Kuwabata S , Yoneyama H. Anal . Chem. , 1997 , 69 :1045 —1053
[32] Andreu R , Calvente J J , Fawcett W R , et al . J . Phys. Chem.B , 1997 , 101 : 2884 —2894
[33] Calvente J J , Andreu R , Molero M, et al . J . Phys. Chem. B ,2001 , 105 : 9557 —9568
[34] Marcus R A. J . Chem. Phys. , 1956 , 24 : 966 —978
[35] Marcus R A. J . Chem. Phys. , 1965 , 43 : 679 —701
[36] Bockris J O M, Khan S U M. Quantum Electrochemistry. New York : Plenum Press , 1979. 200 —301
[37] 吴辉煌(Wu H H) . 电化学( Electrochemistry) . 北京: 化学工业出版社(Beijing : Chemical Industry Press) , 2004. 40 —51
[38] Weber K, Creager S E. Anal . Chem. , 1994 , 66 : 3164 —3172
[39] 赵健伟(Zhao J W) , 董绍俊(Dong S J) , 刘忠范(Liu Z F) . 分析化学(Chin. J . Anal . Chem. ) , 2000 , 28(6) : 661 —665
[40] Chidsey C E D. Science , 1991 , 251 : 919 —922
[41] Sek S , Misicka A , Bilewicz R. J . Phys. Chem. B , 2000 , 104 :5399 —5402
[42] Robinson D B , Chidsey C E D. J . Phys. Chem. B , 2002 , 106 :10706 —10713
[43] Fedurco M, Augustynski J , Indiani C , et al . J . Am. Chem.Soc. , 2005 , 127 : 7638 —7646
[44] Yue H , Khoshtariya D , Waldeck D H , et al . J . Phys. Chem. B ,2006 , 110 : 19906 —11913
[45] Chi Q , Zhang J D , Andersen J E T , et al . J . Phys. Chem. B ,2001 , 105 : 4669 —4679
[46] 赵健伟(Zhao J W) , 于化忠( Yu H Z) , 王永强(Wang Y Q)等. 物理化学学报(Acta Phys. Chim. Sin. ) , 1997 , 13 (1) :42 —47
[47] 赵健伟(Zhao J W) , 于化忠( Yu H Z) , 王永强(Wang Y Q)等. 物理化学学报(Acta Phys. Chim. Sin. ) , 1996 , 12 (7) :581 —588
[48] Wang Y Q , Yu H Z , Zhao J W, et al . Langmuir , 1996 , 12 :5466 —5473
[49] Rulkens R , Lough A J , Manners I , et al . J . Am. Chem. Soc. ,1996 , 118 : 12683 —12695
[50] Schurko R W, Hung I , Macdonald CL B , et al . J . Am. Chem.Soc. , 2002 , 124 : 13204 —13214
[51] Bühl M, Grigoleit S. Organometallics , 2005 , 24 : 1516 —1527
[52] RouéS , Lapinte C. Organometallics , 2004 , 23 : 2558 —2567

[1] Shuaibing Yu, Zhaolu Wang, Xuliang Pang, Lei Wang, Lianzhi Li, Yingwu Lin. Peptide-Based Metal Ion Sensors [J]. Progress in Chemistry, 2021, 33(3): 380-393.
[2] Xin Ni, Yang Zhou, Ruiqin Tan, Yongbo Kuang. Fabrication and Modification of Ferrite Photocathodes for Photoelectrochemical Water Splitting [J]. Progress in Chemistry, 2020, 32(10): 1515-1534.
[3] Li Zhiguo, Zhang Lingling. Influence Factors on the Performance of DNA Self-Assembled Monolayers on Gold [J]. Progress in Chemistry, 2014, 26(05): 846-855.
[4] Bian Yinghui, Dong Xujing, Zhu Lijun, Zhou Yulu, Xiang Yuzhi, Xia Daohong. Supramolecular Interaction of Petroleum Components and Model Compounds [J]. Progress in Chemistry, 2013, 25(08): 1260-1271.
[5] Song Yingpan, Feng Miao, Zhan Hongbing*. Application of Graphene Edge Effect in Electrochemical Biosensors [J]. Progress in Chemistry, 2013, 25(05): 698-706.
[6] Li Jing, Yang Xiaoying*. Applications of Novel Carbon Nanomaterials——Graphene and Its Derivatives in Biosensing [J]. Progress in Chemistry, 2013, 25(0203): 380-396.
[7] Qian Dongjin*, Fu Yanrong. Interfacial Self-Assembly of Viologen-Functionalized Ultrathin Films and Molecular Aggregates [J]. Progress in Chemistry, 2013, 25(01): 46-53.
[8] Wen Yanli, Lin Meihua, Pei Hao, Lu Na, Fan Chunhai. Electrochemical-Based MicroRNA Sensors [J]. Progress in Chemistry, 2012, (9): 1656-1664.
[9] Song Yingpan, Feng Miao, Zhan Hongbing. Applications of Graphene Nanocomposites in Electrochemical Biosensors [J]. Progress in Chemistry, 2012, (9): 1665-1673.
[10] Shi Wentao, Di Jing, Ma Zhanfang. Electrochemical Glucose Biosensors [J]. Progress in Chemistry, 2012, 24(04): 568-576.
[11] Wang Juan, Liu Ying, Zhang Weide. Photoelectrochemical Properties and Applications of Carbon Nanotubes/Semiconductor Nanocomposites [J]. Progress in Chemistry, 2011, 23(8): 1583-1590.
[12] Lu Lin, Li Xiaogang, Gao Jin. Localized Electrochemical Study on the Interface Corrosion Between Organic Coating/Metal Substrate [J]. Progress in Chemistry, 2011, 23(8): 1618-1626.
[13] Zhao Dan, Wang Yan, Zhao Min. Bioelectrochemistry of Laccase [J]. Progress in Chemistry, 2011, 23(6): 1224-1236.
[14] Shao Na, Zhang Xiangyuan, Yang Ronghua. Applications of Spiropyran Derivatives in Analytical Chemistry [J]. Progress in Chemistry, 2011, 23(5): 842-851.
[15] Chen Yiting, Huang Lu, Lin Qi. The Application of Heated Electrodes in Electrochemical Sensors [J]. Progress in Chemistry, 2011, 23(11): 2377-2388.