中文
Announcement
More
Progress in Chemistry 2008, Vol. 20 Issue (01): 98-104 Previous Articles   Next Articles

• Review •

The Structure and Synthesis of Caspase Inhibitors

Zhang Yanqin; Zheng Songzhi; Tao Lan; An Shengji*   

  1. (Institute of Chemistry, Jilin University, Changchun 130021, China)
  • Received: Revised: Online: Published:
  • Contact: An Shengji
PDF ( 1445 ) Cited
Export

EndNote

Ris

BibTeX

The study on Caspase inhibitors becomes one of the most important tasks in the field of life sciences as Caspase playes a key role in apoptosis. Synthetic Caspase inhibitors mainly include peptide and non-peptide. Peptide is made up of two parts, which are pro-peptide structure and peptide. Non-peptide has not fixed structural model. Its synthesis is usually started from known lead compounds, improving the process of inhibitors, and searching for new effect groups. This paper introduces synthetic methods and structure of common peptide and non-peptide of Caspase inhibitors.

CLC Number: 

[ 1 ] Denault J B , Salvesen G S. Chem. Rev. , 2002 , 102 : 4489 —4499
[ 2 ] Miller L J , Marx J . Science , 1998 , 281 : 1301 —1304
[ 3 ] Nicholson D W, Ali A , Thornberry N A , et al . Nature , 1995 ,376 : 37 —43
[ 4 ] Caserta T M, Smith A N , Gultice A D , et al . Apoptosis , 2003 ,8 : 345 —352
[ 5 ] Shahripour A B , Plummer M S , Lunney E A , et al . Bioorg.Med. Chem. ,2002 , 10 : 31 —40
[ 6 ] Scott C W, Sobotka2Briner C , Wilkins D E , et al . J . Pharmacol .Exp. Ther. , 2003 , 304 : 433 —440
[ 7 ] O’Brien T , Lee D. Mini . Rev. Med. Chem. , 2004 , 4 : 153 —165
[ 8 ] Revesz L , Briswalter C , Heng R ,et al . Tetrahedron Lett . , 1994 ,35 : 9693 —9696
[ 9 ] Dolle R E. US 55 853 57 , 1996
[10] 张德昌(Zhang D C) . CN 1 285 356 , 2001
[11] Dolle R E , Hoyer D , Prasad C V C , et al . J . Med. Chem. ,1994 , 37 : 563 —564
[12] Dolle R E , Prouty C P , Prasad C V C , et al . J . Med. Chem. ,1996 , 39 : 2438 —2440
[13] Liau M L , Panicker R C , Yao S Q. Tetrahedron Lett . , 2003 ,44 : 1043 —1046
[14] Henzing A J , Dodson H , Earnshaw W C , et al . J . Med. Chem. ,2006 , 49 : 7636 —7645
[15] Webb T R , Murphy A M, Dagnino R , et al . J . Am. Chem.Soc. , 1992 , 114 : 3156 —3157
[16] Mellon C , Aspiotis R , Black C W, et al . Bioorg. Med. Chem.Lett . , 2005 , 15 : 3886 —3890
[17] Ewing W R , Becker M R , Manetta V E , et al . J . Med. Chem. ,1999 , 42 : 3557 —3571
[18] Micale N , Vairagoundar R , Alexander G, et al . J . Med.Chem. , 2004 , 47 : 6455 —6458
[19] Zhang J L , Liu L H , Wang J D , et al . Chem. Res. Chin. U. ,2006 , 22 : 225 —228
[20] Guo Z M, Xian M, Zhang W, et al . Bioorg. Med. Chem. ,2001 , 9(1) : 99 —106
[21] Linton S D , Karanewsky D S , Ternansky R J , et al . Bioorg.Med. Chem. Lett . , 2002 , 12(20) : 2969 —2971
[22] Linton S D , Karanewsky D S , Ternansky R J , et al . Bioorg.Med. Chem. Lett . , 2002 , 12(20) : 2973 —2975
[23] Yang W, Guastella J , Huang J C , et al . Br. J . Pharmacol . ,2003 , 140 : 402 —412
[24] Cai S X, Guan L F , Jia S J . Bioorg. Med. Chem. Lett . , 2004 ,14 : 5295 —5300
[25] Wang Y, Guan L F , Jia S J , et al . Bioorg. Med. Chem. Lett . ,2005 , 15 : 1379 —1383
[26] Wang Y, Huang J C , Zhou Z L , et al . Bioorg. Med. Chem.Lett . , 2004 , 14 : 1269 —1272
[27] Wang Y L , O’Neil S V , Wos J A , et al . Bioorg. Med. Chem.Lett . , 2007 , 15 : 1311 —1322
[28] Micale N , Kozikowski A P , Ettari R , et al . J . Med. Chem. ,2006 , 49 : 3064 —3067
[29] Dolle R E , Prasad C V C , Prouty C P , et al . J . Med. Chem. ,1997 , 40 : 1941 —1946
[30] Rudolphi K, Gerwin N ,Verzijl N , et al . Osteoarthritis Cartilage ,2003 , 11 : 738 —746
[31] Soper D L , Sheville J , Steven V , et al . Bioorg. Med. Chem.Lett . , 2006 , 16 : 4233 —4236
[32] Ekici ; D , Gê tz M G, Powers J C , et al . J . Med. Chem. ,2004 , 47 : 1889 —1892
[33] Ekici ; D , Li Z Z , Powers J C , et al . J . Med. Chem. , 2006 ,49 : 5728 —5749
[34] Palmer J T , Rasnick D , Klaus J L. US 6 287 840 , 2001
[35] Sirois S , Wei D Q , Du Q , Chou K C. J . Chem. Inf . Comput .Sci . , 2004 , 44 : 1111 —1122
[36] 柏旭(Bai X) . 化学通报(Chemistry) , 2001 , 12 : 762 —768
[37] Lee D , Long S A , Murray J H , et al . J . Med. Chem. , 2001 ,44 : 2015 —2026
[38] Chu W H , Zhang J , Zeng CB , et al . J .Med. Chem. , 2005 , 48 :7637 —7647
[39] Isabel E , Black W C , Bayly C I , et al . Bioorg. Med. Chem.Lett . , 2003 , 13 : 2137 —2140
[40] Chen Y H , Zhang Y H , Nan F J , et al . J . Med. Chem. , 2006 ,49 : 1613 —1623
[41] Choong I C , Lew W, Lee D , et al . J . Med. Chem. , 2002 , 45 :5005 —5022
[42] Allen D A , Pham P , Choong I C. Bioorg. Med. Chem. Lett . ,2003 , 13 : 3651 —3655
[43] Campaigne E , Hutchinson J H. J . Heterocyclic Chem. , 1970 , 7 :655 —659
[44] Kravchenko D V , Kysil V M, Ivachtchenko A V , et al . I L.Farmaco , 2005 , 60 : 804 —809
[45] Braddock M, Quinn A. Nat . Rev. Drug. Discov. , 2004 , 3 :330 —339
[46] Hoglen N C , Hirakawa B P , Fisher C D , et al . J . Pharmacol .Exp. Ther. , 2004 , 309 : 634 —640

[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[4] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[5] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[6] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[7] Yang Guodong, Yuan Gaoqian, Zhang Jingzhe, Wu Jinbo, Li Faliang, Zhang Haijun. Porous Electromagnetic Wave Absorbing Materials [J]. Progress in Chemistry, 2023, 35(3): 445-457.
[8] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[9] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[10] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[11] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[12] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[13] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[14] Shunxin Gu, Qin Jiang, Pengfei Shi. Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2022, 34(9): 1957-1971.
[15] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.