中文
Announcement
More
Progress in Chemistry 2008, Vol. 20 Issue (01): 163-170 Previous Articles   Next Articles

• Review •

Analyzing the Effect of Carrier on the Microenvironment of Encapsulated Enzyme

Xu Songwei 1*; Zhang Jie1; Yang Zhanping1; Cao Jianhua 1; Ma Xiaolong1; Jiang Zhongyi2   

  1. (1. Technical Center, Nantong Cellulose Fibers Co., Ltd., Nantong, Jiangsu 226008, China;
    2. School of Chemical Engineering &Technology, Tianjin University, Tianjin 300072, China)
  • Received: Revised: Online: Published:
  • Contact: Xu Songwei
PDF ( 1544 ) Cited
Export

EndNote

Ris

BibTeX

It is very important to select and design the novel carriers for enzyme encapsulation, especially to create the appropriate microenvironment for encapsulated enzymes in the carriers. The key factors affecting the enzyme microenvironment in the carrier for enzyme encapsulation were analyzed and proposed in this review, including the hydrophilicity, the structure and morphology, and the reactivity of the carriers. Water content in the carrier is determined by its hydrophilicity. The enzyme stability and conformational transitions are impacted by the cage effect formed by the carrier structure and morphology, and by the reactivity of the carriers, such as the activity of covalent linking, hydrogen bonding and electrostatic interaction. Meanwhile, the diffusion properties of substrate/product and the enzyme accessibility are affected by the pore structure and distribution, and by the reactivity of carriers. Then encapsulation processes for normally used carriers are presented, including sol-gel silica, polymer hydrogel and polymer-silica hybrid composite. According to the factors mentioned above, the enzyme loading efficiency, catalytic activities, and stability used the three types of carriers for enzyme encapsulation were analyzed. Also promotions to modify the microenvironment of encapsulated enzymes in the three types of carrier are discussed.

CLC Number: 

[ 1 ] West J M, Kantrowitz E R. J . Am. Chem. Soc. , 2003 , 125 :9924 —9925
[ 2 ] Hsu A F , Thomas A F , Siyan S. Appl . Biochem. , 2000 , 31 :179 —183
[ 3 ] Meyer M, Fischer A , Hoffmann H. J . Phys. Chem. B , 2002 ,106 : 1528 —1533
[ 4 ] Blandino A , Macías M, Cantero D. Process Biochem. , 2001 ,36 : 601 —606
[ 5 ] Beinum W V , Meeussen J C L , Riemsdijk W H V. Enviro. Sci .Technol . , 2000 , 34 : 4902 —4907
[ 6 ] Reischwitz A , Reh K D. Enzyme Microb. Tech. , 1995 , 17 :457 —461
[ 7 ] Betigeri S S , Neau S H. Biomaterials , 2002 , 23 : 3627 —3636
[ 8 ] Sassi Z , Bureau J C , Bakkali A. Vib. Spectrosc. , 2002 , 28 :299 —318
[ 9 ] Wu X J , Choi M M F. Anal . Chem. , 2004 , 76 : 4279 —4285
[10] Zaremba C M, Stuckyt G D. Curr. Opin. Solid St . M. , 1996 ,1 : 425 —429
[11] Gill I , Ballesteros A. J . Am. Chem. Soc. , 1998 , 120 : 8587 —8598
[12] Kato M, Saruwatari H , Sakai-Kato K, et al . J . Chromatogr. A ,2004 , 1044 : 267 —270
[13] Liu D M, Chen I W. Acta Mater. , 1999 , 47 : 4535 —4544
[14] Frenkel-Mullerad H , Avnir D. J . Am. Chem. Soc. , 2005 , 127 :8077 —8081
[15] Chen Q , Kenausis G L , Heller A. J . Am. Chem. Soc. , 1998 ,120 : 4582 —4585
[16] Khayet M. AIChE J . , 2002 , 48 : 2833 —2843
[17] Huang R Y M, Pal R , Moon G Y. J . Memb. Sci . , 2000 , 167 :275 —289
[18] Dave B C , Soyez H , Miller J M, et al . Chem. Mater. , 1995 , 7 :1431 —1434
[19] Flora K, Brennan J D. Anal . Chem. , 1998 , 70 : 4505 —4513
[20] Das T K, Khan I , Rousseau D L. J . Am. Chem. Soc. , 1998 ,120 : 4752 —4762
[21] Wambolt CL , Saavedra S S. J . Sol-Gel Sci . Technol . , 1996 , 7 :53 —57
[22] Ferreira L , Ramos M A , Dordick J S , et al . J . Mol . Catal . B :Enzym. , 2002 , 835 : 1 —11
[23] Dave B C , Dunn B , Valentine J S , et al . Anal . Chem. , 1994 ,66 : 1120A —1127A
[24] Avnir D , Braun S , Lev O , et al . Chem. Mater. , 1994 , 6 :1605 —1614
[25] Wang J , Pamidi P , Park D. Anal . Chem. , 1996 , 68 : 2705 —2708
[26] Heller J , Heller A. J . Am. Chem. Soc. , 1998 , 120 : 4586 —4590
[27] Xu J . Thesis for Doctor Degree of Drexel University , 2000
[28] Jordan J D , Dunbar R A , Bright F V. Anal . Chem. , 1995 , 67 :2436 —2443
[29] Flora K, Brennan J D. Chem. Mater. , 2001 , 13 : 4170 —4179
[30] Gottfried D S , Kagan A , Hoffman B M, et al . J . Phys. Chem.B , 1999 , 103 : 2803 —2087
[31] Kadnikova E N , Kostic N M. J . Non-Cryst . Solids , 2001 , 283 :63 —68
[32] Dooky M A , Baker GA , Pandey S , et al . Chem. Mater. , 2000 ,12 : 1142 —1147
[33] Pogorevc M, Strauss U T , Riermeier T , et al . Tetrahedron :Asymme. , 2002 , 13 : 1443 —1447
[34] Baker GA , Jordan J D , Bright F V. J . Sol-Gel Sci . Technol . ,1998 , 11 : 43 —54
[35] Cao L. Curr. Opin. Chem. Biol . , 2005 , 9 : 217 —226
[36] Badjic J D , Kostic N M. J . Am. Chem. Soc. , 1998 , 120 :4366 —4371
[37] Badjic J D , Kostic N M. J . Phys. Chem. B , 2000 , 104 :11081 —11087
[38] Shen C , Kostic N M. J . Am. Chem. Soc. , 1997 , 119 : 1304 —1312
[39] Shen C , Kostic N M. J . Electroanal . Chem. , 1997 , 438 : 61 —65
[40] Bronshtein A , Aharonson N , Avnir D , et al . Chem. Mater. ,1997 , 9 : 2632 —2639
[41] Livage J , Roux C , Da C J M, et al . J . Sol2Gel Sci . Technol . ,1996 , 7 : 45 —51
[42] Henchl L L , West J K. Chem. Rev. , 1990 , 90 : 33 —72
[43] Miller J M, Valentine J S , Zink J I. J . Non2Cryst . Solids , 1996 ,202 : 279 —289
[44] Bai Z W, Zhou Y K. React . Funct . Polym. , 2004 , 59 : 93 —98
[45] Choi M, Kleitz F , Liu D , et al . J . Am. Chem. Soc. , 2005 ,127 : 1924 —1932
[46] Wu H , Jiang Z Y, Xu S W, et al . Chin. Chem. Lett . , 2003 ,14 : 423 —425
[47] Smith K, Silvernail N J , Elgren T E , et al . J . Am. Chem.Soc. , 2002 , 124 : 4247 —4252
[48] Rao G V R , Krug M E , Balamurugan S , et al . Chem. Mater. ,2002 , 14 : 5075 —5080
[49] Lettau K, Warsinke A , Laschewsky A , et al . Chem. Mater. ,2004 , 16 : 2745 —2749
[50] Skrtica D , Antonucci J M. Biomaterials , 2003 , 24 : 2881 —2888
[51] Welch S A , Barker W W, Banfield J F. Geochim. Cosmochim.A. , 1999 , 63 : 1405 —1419
[52] Dashevsky A. Int . J . Pharm. , 1998 , 161 : 1 —5
[53] Lim F , Sun A M. Science , 1980 , 210 : 908 —910
[54] Rilling P , Walter T P , Vogt P W. J . Membr. Sci . , 1997 , 129 :283 —287
[55] Hearn E , Neufeld R J . Process Biochem. , 2000 , 35 : 1253 —1260
[56] Tanriseven A , Doˇgan S,. Process Biochem. , 2001 , 36 : 1081 —1083
[57] Mechmetoˇglu B, Ates S. Process Biochem. , 1997 , 32 : 433 —436
[58] Ro H S , Kim H S. Enzyme Microb. Technol . , 1991 , 13 : 920 —924
[59] Tanriseven A , Uludaˇg Y B , Doˇgan S. Enzyme Microb. Tech. ,2002 , 30 : 406 —409
[60] Coradin T , Livage J . C. R. Chimie , 2003 , 6 : 147 —152
[61] Mokari T , Sertchook H , Aharon A , et al . Chem. Mater. , 2005 ,17 : 258 —263
[62] Ji X, Hampsey J E , Hu Q , et al . Chem. Mater. , 2003 , 15 :3656 —3662
[63] Yu X H , Zhuo R X, Feng J , et al . J . Eur. Polym. , 2004 , 40 :2445 —2450
[64] Jiang Z Y, Xu S W, Lu Y, et al . J . Biomat . Sci . : Polym. E ,2006 , 17 : 21 —35
[65] Xu S W, Lu Y, Jiang Z Y, et al . J . Mol . Catal . B : Enzym.2006 , 43 : 68 —73
[66] Shchipunov Y A , Karpenko T Y, Bakunin L Y, et al . J .Biochem. Biophys. Meth. , 2004 , 58 : 25 —38
[67] Luckarift H R , Spain J C , Naik R R , et al . Nature Biotechnol . ,2004 , 22 : 211 —213
[68] Xu S W, Jiang Z Y, Lu Y, et al . Ind. Eng. Chem. Res. ,2006 , 45 : 511 —517
[69] Li Y, Yip W T. J . Am. Chem. Soc. , 2005 , 127 : 12756 —12757
[70] Luo T J M, Soong R , Lan E , et al . Nature Mater. , 2005 , 4 :220 —224
[71] Sakai S , Ono T , Ijima H , et al . Biomaterials , 2001 , 22 : 2827 —2834
[72] Xu S W, Lu Y, Jiang Z Y, et al . J . Biomat . Sci . : Polym. E ,2007 , 18 : 71 —80
[73] Asefa T , MacLachlan M J , Coombs N , et al . Nature , 1999 , 402 :867 —871
[74] Clark J H , Macquarrie D J . Chem. Commun. , 1998 , 853 —860
[75] Moller K, Bein T. Chem. Mater. , 1998 , 10 : 2950 —2963
[76] Moller K, Bein T , Fischer R X. Chem. Mater. , 1998 , 10 :1841 —1852
[77] Molenkamp W C , Watanabe M, Miyata H , et al . J . Am. Chem.Soc. , 2004 , 126 : 4476 —4477
[78] Wu C G, Bein T. Science , 1994 , 264 : 1757 —1759
[79] Matthijs G, Schacht E. Enzyme Microb. Tech. , 1996 , 19 :601 —605
[80] Kim J , Grate J W, Wang P. Chem. Eng. Sci . , 2006 , 61 :1017 —1026
[81] Yan M, Ge J , Liu Z , et al . J . Am. Chem. Soc. , 2006 , 128 :11008 —11009

[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[3] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[4] Liu Jun, Ye Daiyong. Research Progress of Antiviral Coatings [J]. Progress in Chemistry, 2023, 35(3): 496-508.
[5] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[6] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[7] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[8] Shuai Huang, Yu Tao, Yinliang Huang. Photodeformable Composite Materials Based on Liquid Crystalline Polymers [J]. Progress in Chemistry, 2022, 34(9): 2012-2023.
[9] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[10] Zheng Chen, Zhenhua Jiang. Discussion on Some Chemical Problems of Polymer Condensed Statein Solvent-Free Polymer Production Technology [J]. Progress in Chemistry, 2022, 34(7): 1576-1589.
[11] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[12] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[13] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[14] Zhenxing Li, Zhiwang Luo, Ping Wang, Zhenqiang Yu, Erqiang Chen, Helou Xie. Luminescent Liquid Crystalline Polymers: Molecular Fabrication, Structure-Properties and Their Applications [J]. Progress in Chemistry, 2022, 34(4): 787-800.
[15] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.