中文
Announcement
More
Progress in Chemistry 2007, Vol. 19 Issue (9): 1393-1399 Previous Articles   Next Articles

• Review •

The Electric-Field-Sensitive Hydrogels

Shang Jing;Chen Xin**;Shao Zhengzhong   

  1. Key Laboratory of Molecular Engineering of Polymers,Ministry of Education,Department of Macromolecular Science,Fudan University,Shanghai 200433,China
  • Received: Revised: Online: Published:
  • Contact: Chen Xin
PDF ( 3157 ) Cited
Export

EndNote

Ris

BibTeX

Electric-field-sensitive hydrogel is one kind of intelligent hydrogels that exhibits swelling, shrinking or bending behavior on the application of an electric field. The main advantage of such a kind of hydrogel is that it can transform electrical energy into mechanical energy. In this paper, the recent research on electric-field-sensitive hydrogels is reviewed, in which the preparation and deformation mechanism of hydrogels are introduced. It is generally thought that the deformation of the hydrogel in an electric field is due to the change of osmotic pressure based upon the voltage-induced motion of ions in the electrolyte solution and may be influenced by a number of factors, including pH, ionic strength of the bath solution, as well as the electric potential imposed across the hydrogels. At last, the applications of such an electric-field-sensitive hydrogel, for example, in the fields of energy transducing devices, artificial muscles, and controlled drug delivery system are also presented.

CLC Number: 

[ 1 ] Qiu Y, Park K. Adv. Drug Deliv. Rev. , 2001 , 53 : 321 —339
[ 2 ] Ruel-Gariepy E , Shive M, Bichara A , et al . Eur. J . Pharm.Biopharm. , 2004 , 57 : 53 —63
[ 3 ] Liang H F , Hong M H , Ho R M, et al . Biomacromolecules ,2004 , 5 : 1917 —1925
[ 4 ] Tomatsu I , Hashidzume A , Harada A. Macromolecules , 2005 ,38 : 5223 —5227
[ 5 ] Kim S J , Yoon S G, Lee Y M, et al . Biosens. Bioelectron. ,2004 , 19 : 531 —536
[ 6 ] Menager C , Sandre O , Mangili J , et al . Polymer , 2004 , 45 :2475 —2481
[ 7 ] Zhu Y, Zheng L Y. J . Drug Deliv. Sci . Technol . , 2006 , 16 :55 —58
[ 8 ] Han I S , Han M H , KimJ , et al . Biomacromolecules , 2002 , 3 :1271 —1275
[ 9 ] Zhang Y X, Wu F P , Li M Z , et al . Polymer , 2005 , 46 : 7695 —7700
[10] Liu T Y, Hu S H , Liu D M, et al . Langmuir , 2006 , 22 : 5968 —5978
[11] Shiga T. Adv. Polym. Sci . , 1997 , 134 : 131 —163
[12] Lira L M, de Torresi S I C. Electrochem. Commun. , 2005 , 7 :717 —723
[13] Wallmersperger T , Kroplin B , Gulch R W. Mech. Mater. ,2004 , 36 : 411 —420
[14] Shahinpoor M. Smart Mater. Struct . , 1994 , 3 : 367 —372
[15] Hamlen R P , Kent C E , Shafer S N. Nature , 1965 , 206 : 1149 —1150
[16] Tanaka T , Nishio I , Sund S , et al . Science , 1982 , 218 : 467 —469
[17] Osada Y, Okuzaki H , Hori H. Nature , 1992 , 355 : 242 —244
[18] Kim S J , Kim H I , Park S J , et al . Smart Mater. Struct . , 2005 ,14 : 511 —514
[19] Kim H I , Park S J , Kim S I , et al . Synth. Met . , 2005 , 155 :674 —676
[20] Kurkuri M D , Lee J , Han J H. Smart Mater. Struct . , 2006 , 15 :417 —423
[21] Alexander G D , Raushan B K, Gulzhan K, et al . Polym. Int . ,2003 , 52 : 883 —891
[22] Yao L , Krause S. Macromolecules , 2003 , 36 : 2055 —2065
[23] Moschou E A , Madou M J , Bachas L G, et al . Sens. Actuator B :Chem. , 2006 , 115 : 379 —383
[24] Li L , Hsieh Y L. Nanotechnology , 2005 , 16 : 2852 —2860
[25] Homma M, Seida Y, Nakano Y. J . Appl . Polym. Sci . , 2000 ,75 : 111 —118
[26] Kim S J , Lee K J , Kim S I , et al . J . Appl . Polym. Sci . , 2003 ,89 : 2301 —2305
[27] Fei J Q , Zhang Z P , Gu L X. Polym. Int . , 2002 , 51 : 502 —509
[28] Kim S J , Yoon S G, Lee Y H , et al . Polym. Int . , 2004 , 53 :1456 —1460
[29] Kim S J , Yoon S G, Lee S M, et al . Sens. Actuator B : Chem. ,2003 , 96 : 1 —5
[30] Kim SJ , Shin S R , Lee S M, et al . Smart Mater. Struct . , 2004 ,13 : 1036 —1039
[31] Kim S J , Park S J , Shin M S , et al . J . Appl . Polym. Sci . ,2002 , 86 : 2290 —2295
[32] Kim S J , Shin S R , Lee J H , et al . J . Appl . Polym. Sci . ,2003 , 90 : 91 —96
[33] Kim S J , Yoon S G, Kim S I. J . Polym. Sci . Part B : Polym.Phys. , 2004 , 42 : 914 —921
[34] Kim S J , Park S J , Kim I Y, et al . J . Appl . Polym. Sci . ,2002 , 86 : 2285 —2289
[35] Kim S J , Yoon S G, Lee K B , et al . Solid State Ion. , 2003 ,164 : 199 —204
[36] Li R X, Zhang X Z , Zhao J S , et al . J . Appl . Polym. Sci . ,2006 , 101 : 3493 —3496
[37] Liu G Q , Zhao X P. J . Macromol . Sci . Pure Appl . Chem. ,2005 , A42 : 51 —59
[38] Lee C K, Kim S J , Kim S I , et al . Smart Mater. Struct . , 2006 ,15 : 607 —611
[39] Sun S , Mak A F T. J . Polym. Sci . Part B : Polym. Phys. ,2001 , 39 : 236 —246
[40] Sun S , Wong Y W, Yao K D , et al . J . Appl . Polym. Sci . ,2000 , 76 : 542 —551
[41] De Rossi D E , Chiarell P , Buzzigoli G, et al . Trans. Am. Soc.Artif . Intern. Organs , 1986 , 32 : 157 —164
[42] Grimshaw P E , NussbaumJ H , Grodzinsky A J , et al . J . Chem.Phys. , 1990 , 93 : 4462 —4472
[43] Doi M, Matsumoto M, Hirose Y. Macromolecules , 1992 , 25 :5504 —5511
[44] Gong J P , Nitta T , Osada Y. J . Phys. Chem. , 1994 , 98 :9583 —9587
[45] Kwon I C , Bae Y H , Kim S W. J . Polym. Sci . Part B : Polym.Phys. , 1994 , 32 : 1085 —1092
[46] Shiga T , Kurauchi T. J . Appl . Polym. Sci . , 1990 , 39 : 2305 —2320
[47] Shiga T , Hirose Y, Okada A , et al . J . Appl . Polym. Sci . ,1992 , 44 : 249 —253
[48] Yuk S H , Lee H B. J . Polym. Sci . Part B : Polym. Phys. ,1993 , 31 : 487 —489
[49] Bay L , West K, Sommer-Larsen P , et al . Adv. Mater. , 2003 ,15 : 310 —313
[50] Asaka K, Fujiwara N. Electrochim. Acta , 2003 , 48 : 3465 —3471
[51] Schreyer H B , Gebhart N , Kim K J , et al . Biomacromolecules ,2000 , 1 : 642 —647
[52] Paxton R A , Al-Jumaily A M, Easteal A J . Polym. Test , 2003 ,22 : 371 —374
[53] Moschou E A , Peteu S F , Bachas L G, et al . Chem. Mater. ,2004 , 16 : 2499 —2502
[54] Kim S Y, Lee Y M. J . Appl . Polym. Sci . , 1999 , 74 : 1752 —1761
[55] Kagatani S , Shinoda T , Konno Y, et al . J . Pharm. Sci . , 1997 ,86 : 1273 —1277
[56] Murdan S. J . Control . Release , 2003 , 92 : 1 —16

[1] Zheng Chen, Zhenhua Jiang. Discussion on Some Chemical Problems of Polymer Condensed Statein Solvent-Free Polymer Production Technology [J]. Progress in Chemistry, 2022, 34(7): 1576-1589.
[2] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[3] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[4] Li Geng, Li Jie, Jiang Hongyu, Liang Xiaozhong, Guo Kunpeng. Mechano-Responsive Luminescent Polymers [J]. Progress in Chemistry, 2022, 34(10): 2222-2238.
[5] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[6] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[7] Yuanxia Zhang, Yan Bao, Jianzhong Ma. Synthesis of Janus Particles and Their Application Progress in Pickering Emulsion [J]. Progress in Chemistry, 2021, 33(2): 254-262.
[8] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[9] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[10] Jinke Wu, Jianjun Wang, Lixing Dai, Donghao Sun, Jiajia Chen. Metal Coordination Polyurethanes [J]. Progress in Chemistry, 2021, 33(12): 2188-2202.
[11] Weijia Zhang, Xueguang Shao, Wensheng Cai. Molecular Simulation of the Antifreeze Mechanism of Antifreeze Proteins [J]. Progress in Chemistry, 2021, 33(10): 1797-1811.
[12] Shiying Yang, Junqin Liu, Qianfeng Li, Yang Li. Modification Mechanism of Zero-Valent Aluminum by Mechanical Ball Milling [J]. Progress in Chemistry, 2021, 33(10): 1741-1755.
[13] Jiangjiexing Wu, Hui Wei. Efficient Design Strategies for Nanozymes [J]. Progress in Chemistry, 2021, 33(1): 42-51.
[14] Xiangli Chen, Kaiqiang Liu, Yu Fang. Molecular Gels: From Structural Regulation to Functional Applications [J]. Progress in Chemistry, 2020, 32(7): 861-872.
[15] Meng Mu, Xuewen Ning, Xinjie Luo, Yujun Feng. Fabrications, Properties, and Applications of Stimuli-Responsive Polymer Microspheres [J]. Progress in Chemistry, 2020, 32(7): 882-894.
Viewed
Full text


Abstract

The Electric-Field-Sensitive Hydrogels