中文
Announcement
More
Progress in Chemistry 2007, Vol. 19 Issue (9): 1275-1281 Previous Articles   Next Articles

• Review •

PCBs Treatment by Sub-Supercritical Water Catalytic Oxidation, Thermolysis and Reduction

Wei Chaohai**;Yan Bo;Hu Chengsheng   

  1. College of Environmental Science and Engineering, South China University of Technology, Guangzhou, 510640,China
  • Received: Revised: Online: Published:
  • Contact: Wei Chaohai
PDF ( 1381 ) Cited
Export

EndNote

Ris

BibTeX

The major sources and environmental hazards of PCBs are briefly introduced. The reaction pathways and decomposition efficiencies of PCBs in Supercritical Water (SCW) are reviewed in terms of Supercritical Water Oxidation (SCWO), Supercritical Water Thermolysis (SCWT), and Subcritical Water Reduction (SCWR). The mechanisms of decomposition and dechlorination of PCBs on account of the action of cosolvent with methanol or benzene, alkali catalyst with sodium carbonate or sodium hydroxide and oxidant with sodium nitrate and sodium nitrite are summarized. The diffirences about the promotion mechanism of methanol to PCBs decomposition are found between SCWO and SCWT. The dechlorination reaction was accelerated due to the decrease of HCl which produced in the dechlorination process by the neutralisation of HCl with alkali catalyst. The corrosion problem of reactor and cost-effectiveness during the process of SCWO PCBs are discussed. The research trends for the future in SCWO PCBs are proposed.

CLC Number: 

[ 1 ] Alford-Stevens A L. Environ. Sci . Technol . , 1986 , 20 : 1194 —1199
[ 2 ] Schmelling D C , Poster D L , Sheikhly M, et al . Environ. Sci .Technol . , 1998 , 32 : 270 —275
[ 3 ] 毕新慧(Bi X H) , 徐晓白(Xu X B) . 化学进展( Progress in Chemistry) , 2000 , 12(2) : 152 —160
[ 4 ] Buckley E H. Science , 1982 , 216 : 520 —522
[ 5 ] Bumpus J A , Tien M, Wright D , et al . Science , 1985 , 228 :1434 —1436
[ 6 ] Hinz D C , Wai C M, Wenclawiak B W. J . Environ. Monit . ,2000 , 2 : 45 —48
[ 7 ] Anitescu G, Tavlarides L L. Ind. Eng. Chem. Res. , 2002 , 41 :9 —21
[ 8 ] Litten S , McChesney D J , Hamilton M C. Environ. Sci .Technol . , 2003 , 37 : 5502 —5510
[ 9 ] Duffy J E , Anderson M A , Hill C G Jr , et al . Environ. Sci .Technol . , 2000 , 34 : 3199 —3204
[10] Rodrigues J L M, Maltseva O V , Tsoi T V , et al . Environ. Sci .Technol . , 2001 , 35 : 663 —668
[11] Poster D L , Chaychian M, Neta P , et al . Environ. Sci .Technol . , 2003 , 37 : 3808 —3815
[12] Arbon R E , Mincher B J , Knighton W B. Environ. Sci .Technol . , 1996 , 30 : 1866 —1871
[13] Siskin M, Katritzky A R. Science , 1991 , 254 : 231 —237
[14] Poliakoff M, King P. Nature , 2001 , 412 : 125 —125
[15] Obrien C P , Thies M C , Bruce D A. Environ. Sci . Technol . ,2005 , 39 : 6839 —6844
[16] Martino C J , Savage P E. Environ. Sci . Technol . , 1999 , 33 :1911 —1915
[17] Yu J , Savage P E. Environ. Sci . Technol . , 2000 , 34 : 3191 —3198
[18] Kronholm J , Metsala H , Hartonen K. Environ. Sci . Technol . ,2001 , 35 : 3247 —3251
[19] Jin F , Moriya T , Enomoto H. Environ. Sci . Technol . , 2003 ,37 : 3220 —3231
[20] Yak H K, Wenclawiak B W, Cheng I F , et al . Environ. Sci .Technol . , 1999 , 33 : 1307 —1310
[21] Yak H K, Lang Q , Wai C M, et al . Environ. Sci . Technol . ,2000 , 34 : 2792 —2798
[22] 刘志敏(Liu Z M) , 张建玲(Zhang J L) , 韩布兴(Han B X) .化学进展(Progress in Chemistry) , 2005 , 17(2) : 266 —274
[23] Modell M. U S P 4 543 190 , 1980
[24] Hatakeda K, Ikushima Y, Ito S , et al . Chem. Lett . , 1997 , 26 :245 —246
[25] Hatakeda K, Ikushima Y, Sato O , et al . Chem. Eng. Sci . ,1999 , 54 : 3079 —3084
[26] Crain N , Shanableh A , Gloyna E F. Water Sci . Technol . , 2000 ,42 : 363 —368
[27] Crooker P J , Ahluwalia K S , Fan Z. Ind. Eng. Chem. Res. ,2000 , 39 : 4865 —4870
[28] Griffith J W, Raymond D H. Waste Management , 2002 , 22 :453 —459
[29] Wei C H , Hu C S , Wu C F , et al . J . Environ. Sci . , 2006 , 18 :644 —649
[30] Wang T , Xiang B T , Shen Z Y, et al . Environ. Sci . Technol . ,2003 , 37 : 1955 —1961
[31] 向波涛(Xiang B T) , 王涛(Wang T) , 沈忠耀(Shen Z Y) . 化工学报(Journal of Chemical Industry and Engineering) , 2003 , 54(1) : 80 —85
[32] Qi X H , Zhuang Y Y, Yuan Y C , et al . J . Hazardous Materials B , 2002 , 90 : 51 —62
[33] Hao X H , Guo L J , Mao X, et al . Int . J . Hydrogen Energy ,2003 , 28 : 55 —64
[34] Su X L , Zhao Y L , Bi J C , et al . Fuel Processing Technol . ,2004 , 85 : 1249 —1258
[35] Meng L H , Zhang Y, Huang YD , et al . Polymer Degradation and Stability , 2004 , 83 : 389 —393
[36] 丁军委(Ding J W) , 陈丰秋(Chen F Q) , 吴素芳(Wu S F) 等.高校化学工程学报(Journal of Chemical Engineering of Chinese Universities) , 2001 , 15(1) : 66 —70
[37] 林春绵(Lin C M) , 王军良(Wang J L) , 徐明仙(Xu M X) 等.高校化学工程学报(Journal of Chemical Engineering of Chinese Universities) , 2005 , 19(1) : 103 —107
[38] Savage P E , Rovira J , Stylski N , et al . J . Supercrit . Fluids ,2000 , 17 : 155 —170
[39] Yamasaki N , Yasui T , Matsuoka K. Environ. Sci . Technol . ,1980 , 14 : 550 —552
[40] Anitescu G, Zhang Z H , Tavlarides L L. Ind. Eng. Chem.Res. , 1999 , 38 : 2231 —2237
[41] Anitescu G, Tavlarides L L. Ind. Eng. Chem. Res. , 2000 , 39 :583 —591
[42] Anitescu G, Tavlarides L L. AIChE Journal , 2004 , 50 : 1536 —1544
[43] Anitescu G, Munteanu V , Tavlarides L L. J . Supercrit . Fluids ,2005 , 33 : 139 —147
[44] Anitescu G, Lawrence L L. Ind. Eng. Chem. Res. , 2005 , 44 :1226 —1232
[45] Weber R , Yoshida S , Miwa K. Environ. Sci . Technol . , 2002 ,36 : 1839 —1844
[46] Fang Z , Xu S K, Butler I S , et al . Energy Fuels , 2004 , 18 :1257 —1265
[47] Lee S H , Park K C , Mahiko T , et al . J . Supercrit . Fluids ,2006 , 39 : 54 —62
[48] Kritzer P , Dinjus E. Chem. Eng. J . , 2001 , 83 : 207 —214
[49] Muthukumaran P , Gupta R B. Ind. Eng. Chem. Res. , 2000 ,39 : 4555 —4563
[50] Fang Z , Xu S K, Smith R L Jr , et al . J . Supercrit . Fluids ,2005 , 33 : 247 —258
[51] Eckert C A , Knutson B L , Debenedetti P G. Nature , 1996 , 383 :313 —318
[52] Chattopadhyay P , Gupta R B. Ind. Eng. Chem. Res. , 2000 ,39 : 2281 —2289
[53] Aki S N V K, AbrahamMA. Environ. Prog. , 1998 , 17 : 246 —255
[54] Zhou W, Anitescu G, Rice P A. Environ. Prog. , 2004 , 23 :222 —231
[55] Sako T , Sugeta T , Otake K, et al . J . Chem. Eng. Jpn. , 1999 ,32 : 830 —832
[56] Wang C B , Zhang W X. Environ. Sci . Technol . , 1997 , 31 :2154 —2156
[57] Chuang F W, Larson R A , Wessman M S. Environ. Sci .Technol . , 1995 , 29 : 2460 —2463
[58] KubátováA , Herman J , Steckler T S , et al . Environ. Sci .Technol . , 2003 , 37 : 5757 —5762
[59] Zhang G, Hua I. Environ. Sci . Technol . , 2000 , 34 : 1529 —1534

[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[3] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[4] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[5] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[6] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[7] Lusha Gao, Jingwen Li, Hui Zong, Qianyu Liu, Fansheng Hu, Jiesheng Chen. Condensed Matter and Chemical Reactions in Hydrothermal Systems [J]. Progress in Chemistry, 2022, 34(7): 1492-1508.
[8] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[9] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[10] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[11] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[12] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[13] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[14] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[15] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.