中文
Announcement
More
Progress in Chemistry 2007, Vol. 19 Issue (9): 1267-1274 Previous Articles   Next Articles

• Review •

Selective Oxidation in Supercritical(Compressed) Carbon Dioxide

Hu Yu;Hou Zhenshan *   

  1. Research Institute of Industrial Catalysis, East China University of Science and Technology,Shanghai 200237, China
  • Received: Revised: Online: Published:
  • Contact: Hou Zhenshan
PDF ( 1146 ) Cited
Export

EndNote

Ris

BibTeX

Supercritical carbon dioxide(SCCO2, Tc= 304K, Pc= 7.38MPa) has been exploited as a reaction medium for catalysis due to its potential advantages such as stability, safety, noninflammability, nontoxicity, low viscosity, high compressibility and high miscibility with many reaction gases,which makes SCCO2 very attractive for processes involving gaseous reactions that often suffer from mass transport limitations. As environmentally benign and economical solvents, supercritical carbon dioxide is properly the solvent that can not be oxidized to other by-products in oxidation reactions. By comparison with traditional organic solvent, the advantages and effects of supercritical carbon dioxide as a solvent on oxidation reaction are extensively described in the literature.The recent developments in selective catalytic oxidation are reviewed in this paper and particular attention is devoted to the selective oxidation of alcohols, ketones, alkanes, alkenes etc. by molecular oxygen as a terminal oxidant.

CLC Number: 

[ 1 ] 胡英(Hu Y) , 吕瑞东(LüR D) , 刘国杰(Liu G J) 等. 物理化学(Physical Chemistry) , 第四版(4th ed. ) . 北京: 高等教育出版社(Beijing : Higher Education Press) , 2005. 14 —48
[2] McHugh M A , Krukonis V J . Supercritical Fluid Extraction , 2nded. Boston : Butterworth-Heinemann , 1994. 1 —16
[3] 朱自强( Zhu Z Q) . 超临界流体技术———原理和应用(Technology of Supercritical Fluids : Theory and Application) . 北京: 化学工业出版社(Beijing : Industry of Chemistry Press) ,2000. 403 —441
[4] 韩布兴(Han B X) 等. 超临界流体科学与技术(Science and Technology of Supercritical Fluids) . 北京: 中国石化出版社(Beijing : China Petrochemical Press) , 2005. 1 —4
[5] Jessop P G, Leitner W. Chemical Synthesis Using Supercritical Fluids. Weinheim: Wiley-VCH , 1999
[6] Noyori R. Chem. Rev. , 1999 , 99(2) : 353 —634
[7] Leitner W. Acc. Chem. Res. , 2002 , 35(9) : 746 —756
[8] Campestrini S , Tonellato U. Curr. Org. Chem. , 2005 , 9 (1) :31 —47
[9] Beckman E J . J . Supercrit . Fluids , 2004 , 28(2P3) : 121 —191
[10] Hancu D , Beckman EJ . Ind. Eng. Chem. Res. , 2000 , 39(8) :2843 —2848
[11] Leitner W. Nature , 2000 , 405 (6783) : 129 —130
[12] Birnbaum E R , Le Lacheur R M, Tumas W, et al . J . Mol .Catal . A: Chem. , 1999 , 139 (1) : 11 —24
[13] Beckman E J . Environ. Sci . Technol . , 2003 , 37 (23) : 5289 —5296
[14] Zhou L , Akgerman A. Ind. Eng. Chem. Res. , 1995 , 34 (5) :1588 —1595
[15] Wang C T , Willey R J . J . Catal . , 2001 , 202 (2) : 211 —219
[16] Jenzer G, Sueur D , Baiker A , et al . Chem. Commun. , 2000 ,(22) : 2247 —2248
[17] Jenzer G, Schneider M S , Baiker A , et al . J . Catal . , 2001 , 199(1) : 141 —148
[18] Grunwaldt J D , Caravati M, Baiker A. J . Phys. Chem. , 2006 ,110(20) : 9916 —9922
[19] Chatterjee M, Ikushima Y. Surface Science and Catalysis , 2005 ,156(2) : 427 —432
[20] Kockritz A , Sebek M, Dittmar A , et al . J . Mol . Catal . A:Chem. , 2006 , 246 (1/2) : 85 —99
[21] Campestrini S , Carraroa M, Ciriminna R , et al . Adv. Syn.Catal . , 2005 , 347 (6) : 825 —832
[22] Blanchard L A , Hancu D , Beckman E J , et al . Nature , 1999 ,399 : 28 —29
[23] Blanchard L A , Gu Z , Brennecke J F. J . Phys. Chem. B , 2001 ,105(12) : 2437 —2444
[24] Brown R A , Pollet P , Jessop P G, et al . J . Am. Chem. Soc. ,2001 , 123 (6) : 1254 —1255
[25] Liu F , Tumas W, Baker R T , et al . Chem. Commun. , 2001 ,(5) : 433 —434
[26] Sellin M F , Webb P B , Cole-Hamilton D J . Chem. Commun. ,2001 , (8) : 781 —782
[27] Bosmann A , Wasserscheid P , Leitner W, et al . Angew. Chem.Int . Ed. , 2001 , 40(14) : 2697 —2699
[28] Zhao G Y, Jiang T , Han B X, et al . J . Phys. Chem. B , 2004 ,108(34) : 13052 —13057
[29] Buffin B P , Clarkson J P , Belitz N L , et al . J . Mol . Catal . A:Chem. , 2005 , 225 (1) : 111 —116
[30] Hou Z S , Theyssen N , Leitner W, et al . Angew. Chem. Int .Ed. , 2005 , 44(9) : 1346 —1349
[31] Maayan G, Neumann R , Leitner W, et al . Chem. Commun. ,2006 , (21) : 2230 —2232
[32] Ciriminna R , Hesemann P , Pagliaro M, et al . Chem. Eur. J . ,2006 , 12(20) : 5220 —5224
[33] Arends I W C E , Sheldon R A. Appl . Catal . A: Gen. , 2001 ,212(1/2) : 175 —187
[34] Sheldon R A , Schuchardt U , Arends I W C E , et al . Acc.Chem. Res. , 1998 , 31(8) : 485 —493
[35] Steele A M, Zhu J , Tsang S C. Catal . Lett . , 2001 , 73(1) : 9 —13
[36] Bolm C , Palazzi C , Leitner W, et al . Chem. Commun. , 2002 ,(15) : 1588 —1589
[37] Weissermel K, Arpe H J . Industrial Organic Chemistry , 2nd ed.VCH-Weinheim, Germany : Wiley , 1997. 200 —206
[38] Yao H , Richardson D E. J . Am. Chem. Soc. , 2000 , 122(13) :3220 —3221
[39] Richardson D E , Yao H , Frank K M, et al . J . Am. Chem.Soc. , 2000 , 122 (8) : 1729 —1739
[40] Nolen S A , Lu J , Eckert C A , et al . Ind. Eng. Chem. Res. ,2002 , 41(3) : 316 —323
[41] Hancu D , Green J , Beckman E J . Ind. Eng. Chem. Res. ,2002 , 41(18) : 4466 —4474
[42] Jenzer G, Mallat T , Baiker A , et al . Appl . Catal . A: Gen. ,2001 , 208 (1/2) : 125 —133
[43] Danciu T , Beckman E J , Grey R , et al . Angew. Chem. Int .Ed. , 2003 , 42(10) : 1140 —1142
[44] Birnbaum E R , Le Lacheur R M, Tumas W, et al . J . Mol . Cat .A: Chem. , 1999 , 139 (1) : 11 —24
[45] Loeker F , Leitner W. Chem. Eur. J . , 2000 , 6 (11) : 2011 —2015
[46] Haas G R , Kolis J W. Organometallics , 1998 , 17 (20) : 4454 —4460
[47] Jiang H , Jia L , Li J . Green Chem. , 2000 , 2(4) : 161 —164
[48] Hou Z S , Han B X, Gao L , et al . New J . Chem. , 2002 , 26(9) : 1246 —1248
[49] Wu X W, Oshima Y, Koda S. Chem. Lett . , 1997 , 26 ( 10) :1045 —1046
[50] Srinivas P , Mukhopadhyay M. Ind. Eng. Chem. Res. , 1994 , 33(2) : 3118 —3124
[51] Srinivas P , Mukhopadhyay M. Ind. Eng. Chem. Res. , 1996 , 35(12) : 4713 —4717
[52] Srinivas P , Mukhopadhyay M. Ind. Eng. Chem. Res. , 1997 , 36(6) : 2066 —2074
[53] Hou Z S , Han B X, Gao L , et al . Green Chem. , 2002 , 4 (5) :426 —430
[54] Busch D H , Wei M, Subramaniam B. J . Am. Chem. Soc. ,2002 , 124 (11) : 2513 —2517
[55] Theyssen N , Leitner W. Chem. Commun. , 2002 , (5) : 410 —411
[56] Theyssen N , Hou Z S , Leitner W. Chem. Eur. J . , 2006 , 12(12) : 3401 —3409
[57] Hancu D , Beckman E J . Green Chem. , 2001 , 3(2) : 80 —86
[58] Heldebrant D J , Witt H N , Jessop P G, et al . Green Chem. ,2006 , 8(9) : 807 —815

[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[7] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[8] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[9] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[10] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[13] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[14] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[15] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.